Add README file
This commit is contained in:
parent
84cd0715c7
commit
bd7af7b297
2 changed files with 95 additions and 0 deletions
|
@ -1434,6 +1434,7 @@ Module EReds.
|
|||
apply PairCong; eauto using ProjCong.
|
||||
apply ERed.PairEta.
|
||||
Qed.
|
||||
|
||||
End EReds.
|
||||
|
||||
#[export]Hint Constructors ERed.R RRed.R EPar.R : red.
|
||||
|
@ -1519,6 +1520,35 @@ Module REReds.
|
|||
rtc RERed.R a b.
|
||||
Proof. induction 1; hauto lq:on ctrs:rtc use:RERed.FromEta. Qed.
|
||||
|
||||
#[local]Ltac solve_s_rec :=
|
||||
move => *; eapply rtc_l; eauto;
|
||||
hauto lq:on ctrs:RERed.R.
|
||||
|
||||
#[local]Ltac solve_s :=
|
||||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||||
|
||||
Lemma AbsCong n (a b : PTm (S n)) :
|
||||
rtc RERed.R a b ->
|
||||
rtc RERed.R (PAbs a) (PAbs b).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||||
rtc RERed.R a0 a1 ->
|
||||
rtc RERed.R b0 b1 ->
|
||||
rtc RERed.R (PApp a0 b0) (PApp a1 b1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||||
rtc RERed.R a0 a1 ->
|
||||
rtc RERed.R b0 b1 ->
|
||||
rtc RERed.R (PPair a0 b0) (PPair a1 b1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||||
rtc RERed.R a0 a1 ->
|
||||
rtc RERed.R (PProj p a0) (PProj p a1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
End REReds.
|
||||
|
||||
Module LoRed.
|
||||
|
@ -1861,4 +1891,27 @@ Module DJoin.
|
|||
move => [v [h0 h1]].
|
||||
exists v. sfirstorder use:@relations.rtc_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma AbsCong n (a b : PTm (S n)) :
|
||||
R a b ->
|
||||
R (PAbs a) (PAbs b).
|
||||
Proof. hauto lq:on use:REReds.AbsCong unfold:R. Qed.
|
||||
|
||||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||||
R a0 a1 ->
|
||||
R b0 b1 ->
|
||||
R (PApp a0 b0) (PApp a1 b1).
|
||||
Proof. hauto lq:on use:REReds.AppCong unfold:R. Qed.
|
||||
|
||||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||||
R a0 a1 ->
|
||||
R b0 b1 ->
|
||||
R (PPair a0 b0) (PPair a1 b1).
|
||||
Proof. hauto q:on use:REReds.PairCong. Qed.
|
||||
|
||||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1).
|
||||
Proof. hauto q:on use:REReds.ProjCong. Qed.
|
||||
|
||||
End DJoin.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue