Add Coquand's algorithm

This commit is contained in:
Yiyun Liu 2025-02-10 18:40:42 -05:00
parent 8105b5c410
commit bccf6eb860
4 changed files with 169 additions and 35 deletions

View file

@ -166,41 +166,6 @@ with TRedSN {n} : PTm n -> PTm n -> Prop :=
Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop.
Definition ishf {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| PAbs _ => true
| PUniv _ => true
| PBind _ _ _ => true
| _ => false
end.
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
Definition ispair {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| _ => false
end.
Definition isabs {n} (a : PTm n) :=
match a with
| PAbs _ => true
| _ => false
end.
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ishf (ren_PTm ξ a) = ishf a.
Proof. case : a => //=. Qed.
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
isabs (ren_PTm ξ a) = isabs a.
Proof. case : a => //=. Qed.
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ispair (ren_PTm ξ a) = ispair a.
Proof. case : a => //=. Qed.
Lemma PProj_imp n p a :
@ishf n a ->