Add syntactic typing rules
This commit is contained in:
parent
4dd2cd7cd8
commit
b2aec9c6ce
2 changed files with 21 additions and 1 deletions
|
@ -1722,4 +1722,4 @@ Qed.
|
||||||
|
|
||||||
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
||||||
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
||||||
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta ST_Nat ST_Ind ST_Suc ST_Zero SE_IndCong SE_SucCong : sem.
|
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta ST_Nat ST_Ind ST_Suc ST_Zero SE_IndCong SE_SucCong SE_IndZero SE_IndSuc : sem.
|
||||||
|
|
|
@ -115,6 +115,13 @@ with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop :=
|
||||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
||||||
|
|
||||||
|
| E_IndCong n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i :
|
||||||
|
funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ PNat ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
||||||
|
funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
||||||
|
Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0
|
||||||
|
|
||||||
| E_Conv n Γ (a b : PTm n) A B :
|
| E_Conv n Γ (a b : PTm n) A B :
|
||||||
Γ ⊢ a ≡ b ∈ A ->
|
Γ ⊢ a ≡ b ∈ A ->
|
||||||
Γ ⊢ A ≲ B ->
|
Γ ⊢ A ≲ B ->
|
||||||
|
@ -139,6 +146,19 @@ with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop :=
|
||||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||||
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B
|
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B
|
||||||
|
|
||||||
|
| E_IndZero n Γ P i (b : PTm n) c :
|
||||||
|
funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P
|
||||||
|
|
||||||
|
| E_IndSuc s Γ P (a : PTm s) b c i :
|
||||||
|
funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P
|
||||||
|
|
||||||
(* Eta *)
|
(* Eta *)
|
||||||
| E_AppEta n Γ (b : PTm n) A B i :
|
| E_AppEta n Γ (b : PTm n) A B i :
|
||||||
⊢ Γ ->
|
⊢ Γ ->
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue