Add extensional version of pair equality rules
This commit is contained in:
parent
ef8feb63c3
commit
a367591e9a
1 changed files with 16 additions and 0 deletions
|
@ -1521,6 +1521,22 @@ Proof.
|
||||||
rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R.
|
rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma SE_PairExt Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊨ PBind PSig A B ∈ PUniv i ->
|
||||||
|
Γ ⊨ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊨ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊨ PProj PL a ≡ PProj PL b ∈ A ->
|
||||||
|
Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||||
|
Γ ⊨ a ≡ b ∈ PBind PSig A B.
|
||||||
|
Proof.
|
||||||
|
move => h0 ha hb h1 h2.
|
||||||
|
suff h : Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B /\
|
||||||
|
Γ ⊨ PPair (PProj PL b) (PProj PR b) ≡ b ∈ PBind PSig A B /\
|
||||||
|
Γ ⊨ PPair (PProj PL a) (PProj PR a) ≡ PPair (PProj PL b) (PProj PR b) ∈ PBind PSig A B
|
||||||
|
by decompose [and] h; eauto using SE_Transitive, SE_Symmetric.
|
||||||
|
eauto 20 using SE_PairEta, SE_Symmetric, SE_Pair.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma SE_FunExt Γ (a b : PTm) A B i :
|
Lemma SE_FunExt Γ (a b : PTm) A B i :
|
||||||
Γ ⊨ PBind PPi A B ∈ PUniv i ->
|
Γ ⊨ PBind PPi A B ∈ PUniv i ->
|
||||||
Γ ⊨ a ∈ PBind PPi A B ->
|
Γ ⊨ a ∈ PBind PPi A B ->
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue