Add lemmas that bad forms are impossible
This commit is contained in:
parent
5ea75052a5
commit
a27c41c5d1
1 changed files with 22 additions and 0 deletions
|
@ -147,6 +147,26 @@ with TRedSN {n} : PTm n -> PTm n -> Prop :=
|
|||
TRedSN a b ->
|
||||
TRedSN (PProj p a) (PProj p b).
|
||||
|
||||
Lemma PProjAbs_imp n p (a : PTm (S n)) :
|
||||
~ SN (PProj p (PAbs a)).
|
||||
Proof.
|
||||
move E : (PProj p (PAbs a)) => u hu.
|
||||
move : p a E.
|
||||
elim : n u / hu=>//=.
|
||||
hauto lq:on inv:SNe.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PProjPair_imp n (a b0 b1 : PTm n ) :
|
||||
~ SN (PApp (PPair b0 b1) a).
|
||||
Proof.
|
||||
move E : (PApp (PPair b0 b1) a) => u hu.
|
||||
move : a b0 b1 E.
|
||||
elim : n u / hu=>//=.
|
||||
hauto lq:on inv:SNe.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Scheme sne_ind := Induction for SNe Sort Prop
|
||||
with sn_ind := Induction for SN Sort Prop
|
||||
with sred_ind := Induction for TRedSN Sort Prop.
|
||||
|
@ -531,6 +551,8 @@ Proof.
|
|||
- scongruence b:on.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
Lemma η_nf'' n (a b : PTm n) : ERed'.R a b -> nf b -> nf a \/ rtc RRed.R a b.
|
||||
Proof.
|
||||
move => h.
|
||||
|
|
Loading…
Add table
Reference in a new issue