Prove termination
This commit is contained in:
parent
b29d567ef0
commit
96b3139726
4 changed files with 266 additions and 16 deletions
|
@ -1050,6 +1050,12 @@ Proof.
|
|||
Qed.
|
||||
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Lemma lored_nsteps_app_cong k (a0 a1 b : PTm) :
|
||||
nsteps LoRed.R k a0 a1 ->
|
||||
ishne a0 ->
|
||||
|
|
|
@ -486,3 +486,8 @@ Lemma check_equal_conf a b nfa nfb nfab :
|
|||
Proof. destruct a; destruct b => //=. Qed.
|
||||
|
||||
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||
|
|
|
@ -4,12 +4,6 @@ Require Import ssreflect ssrbool.
|
|||
From stdpp Require Import relations (rtc(..)).
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||
|
||||
|
||||
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||||
|
||||
|
@ -18,7 +12,6 @@ Proof. induction 1;
|
|||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma coqeq_neuneu u0 u1 :
|
||||
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||||
Proof.
|
||||
|
@ -88,12 +81,6 @@ Proof.
|
|||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||
|
||||
Lemma check_equal_complete :
|
||||
|
|
|
@ -1,14 +1,266 @@
|
|||
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
|
||||
From Hammer Require Import Tactics.
|
||||
Require Import ssreflect ssrbool.
|
||||
From stdpp Require Import relations (nsteps (..)).
|
||||
From stdpp Require Import relations (nsteps (..), rtc(..)).
|
||||
Import Psatz.
|
||||
|
||||
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
||||
Proof. case : a; case : b => //=. Qed.
|
||||
|
||||
#[export]Hint Constructors algo_dom algo_dom_r : adom.
|
||||
|
||||
Lemma algo_dom_r_inv a b :
|
||||
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
algo_dom_r a b.
|
||||
induction 1; sfirstorder use:A_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
algo_dom a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma algo_dom_sym :
|
||||
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
||||
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try qauto use:tm_conf_sym db:adom.
|
||||
move => a a' b hr h ih.
|
||||
move /algo_dom_r_inv : ih => [a0][b0][ih0][ih1]ih2.
|
||||
have nfa0 : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
||||
sauto use:A_HRedsL, A_HRedsR.
|
||||
Qed.
|
||||
|
||||
Definition term_metric k (a b : PTm) :=
|
||||
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.
|
||||
|
||||
Lemma term_metric_sym k (a b : PTm) :
|
||||
term_metric k a b -> term_metric k b a.
|
||||
Proof. hauto lq:on unfold:term_metric solve+:lia. Qed.
|
||||
|
||||
Lemma term_metric_case k (a b : PTm) :
|
||||
term_metric k a b ->
|
||||
(ishf a \/ ishne a) \/ exists k' a', HRed.R a a' /\ term_metric k' a' b /\ k' < k.
|
||||
Proof.
|
||||
move=>[i][j][va][vb][h0] [h1][h2][h3]h4.
|
||||
case : a h0 => //=; try firstorder.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.AppAbs unfold:term_metric solve+:lia.
|
||||
+ hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder qb:on use:ne_hne.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.ProjPair unfold:term_metric solve+:lia.
|
||||
+ hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.IndZero unfold:term_metric solve+:lia.
|
||||
+ hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder use:ne_hne.
|
||||
+ hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder use:ne_hne.
|
||||
+ sfirstorder use:ne_hne.
|
||||
Qed.
|
||||
|
||||
Lemma A_Conf' a b :
|
||||
ishf a \/ ishne a ->
|
||||
ishf b \/ ishne b ->
|
||||
tm_conf a b ->
|
||||
algo_dom_r a b.
|
||||
Proof.
|
||||
move => ha hb.
|
||||
have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
have {}hb : HRed.nf b by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
move => ?.
|
||||
apply A_NfNf.
|
||||
by apply A_Conf.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_abs : forall k a b,
|
||||
term_metric k (PAbs a) (PAbs b) ->
|
||||
exists k', k' < k /\ term_metric k' a b.
|
||||
Proof.
|
||||
move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_abs_inv in hva, hvb.
|
||||
move : hva => [a'][hva]?. subst.
|
||||
move : hvb => [b'][hvb]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lq:on unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_pair : forall k a0 b0 a1 b1,
|
||||
term_metric k (PPair a0 b0) (PPair a1 b1) ->
|
||||
exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1.
|
||||
Proof.
|
||||
move => k a0 b0 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_pair_inv in hva, hvb.
|
||||
move : hva => [?][?][?][?][?][?][?][?]?.
|
||||
move : hvb => [?][?][?][?][?][?][?][?]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lqb:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_bind : forall k p0 a0 b0 p1 a1 b1,
|
||||
term_metric k (PBind p0 a0 b0) (PBind p1 a1 b1) ->
|
||||
exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1.
|
||||
Proof.
|
||||
move => k p0 a0 b0 p1 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_bind_inv in hva, hvb.
|
||||
move : hva => [?][?][?][?][?][?][?][?]?.
|
||||
move : hvb => [?][?][?][?][?][?][?][?]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lqb:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_suc : forall k a b,
|
||||
term_metric k (PSuc a) (PSuc b) ->
|
||||
exists k', k' < k /\ term_metric k' a b.
|
||||
Proof.
|
||||
move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_suc_inv in hva, hvb.
|
||||
move : hva => [a'][hva]?. subst.
|
||||
move : hvb => [b'][hvb]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lq:on unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_abs_neu k (a0 : PTm) u :
|
||||
term_metric k (PAbs a0) u ->
|
||||
ishne u ->
|
||||
exists j, j < k /\ term_metric j a0 (PApp (ren_PTm shift u) (VarPTm var_zero)).
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 neu.
|
||||
have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps.
|
||||
move /lored_nsteps_abs_inv : h0 => [a1][h01]?. subst.
|
||||
exists (k - 1).
|
||||
simpl in *. split. lia.
|
||||
exists i,j,a1,(PApp (ren_PTm shift vb) (VarPTm var_zero)).
|
||||
repeat split => //=.
|
||||
apply lored_nsteps_app_cong.
|
||||
by apply lored_nsteps_renaming.
|
||||
by rewrite ishne_ren.
|
||||
rewrite Bool.andb_true_r.
|
||||
sfirstorder use:ne_nf_ren.
|
||||
rewrite size_PTm_ren. lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_pair_neu k (a0 b0 : PTm) u :
|
||||
term_metric k (PPair a0 b0) u ->
|
||||
ishne u ->
|
||||
exists j, j < k /\ term_metric j (PProj PL u) a0 /\ term_metric j (PProj PR u) b0.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 neu.
|
||||
have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps.
|
||||
move /lored_nsteps_pair_inv : h0 => [i0][j0][a1][b1][?][?][?][?]?. subst.
|
||||
exists (k-1). sauto qb:on use:lored_nsteps_proj_cong unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_app k (a0 b0 a1 b1 : PTm) :
|
||||
term_metric k (PApp a0 b0) (PApp a1 b1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j a0 a1 /\ term_metric j b0 b1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4.
|
||||
move => hne0 hne1.
|
||||
move : lored_nsteps_app_inv h0 (hne0);repeat move/[apply].
|
||||
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
|
||||
move : lored_nsteps_app_inv h1 (hne1);repeat move/[apply].
|
||||
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
|
||||
simpl in *. exists (k - 1). hauto lqb:on use:lored_nsteps_app_cong, ne_nf unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_proj k p0 p1 (a0 a1 : PTm) :
|
||||
term_metric k (PProj p0 a0) (PProj p1 a1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j a0 a1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1.
|
||||
move : lored_nsteps_proj_inv h0 (hne0);repeat move/[apply].
|
||||
move => [i0][a2][hi][?]ha02. subst.
|
||||
move : lored_nsteps_proj_inv h1 (hne1);repeat move/[apply].
|
||||
move => [i1][a3][hj][?]ha13. subst.
|
||||
exists (k- 1). hauto q:on use:ne_nf solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_ind k P0 (a0 : PTm ) b0 c0 P1 a1 b1 c1 :
|
||||
term_metric k (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j P0 P1 /\ term_metric j a0 a1 /\
|
||||
term_metric j b0 b1 /\ term_metric j c0 c1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1.
|
||||
move /lored_nsteps_ind_inv /(_ hne0) : h0.
|
||||
move =>[iP][ia][ib][ic][P2][a2][b2][c2][?][?][?][?][?][?][?][?]?. subst.
|
||||
move /lored_nsteps_ind_inv /(_ hne1) : h1.
|
||||
move =>[iP0][ia0][ib0][ic0][P3][a3][b3][c3][?][?][?][?][?][?][?][?]?. subst.
|
||||
exists (k -1). simpl in *.
|
||||
hauto lq:on rew:off use:ne_nf b:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
||||
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
||||
|
||||
Lemma term_metric_algo_dom : forall k a b, term_metric k a b -> algo_dom_r a b.
|
||||
Proof.
|
||||
move => [:hneL].
|
||||
elim /Wf_nat.lt_wf_ind.
|
||||
move => n ih a b h.
|
||||
case : (fancy_hred a); cycle 1.
|
||||
move => [a' ha']. apply : A_HRedL; eauto.
|
||||
case /term_metric_case : (h); cycle 1.
|
||||
move => [k'][a'][h0][h1]h2.
|
||||
by apply : A_HRedL; eauto.
|
||||
case /term_metric_sym /term_metric_case : (h); cycle 1.
|
||||
move => [k'][b'][hb][/term_metric_sym h0]h1.
|
||||
move => ha. have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
by apply : A_HRedR; eauto.
|
||||
move => /[swap].
|
||||
case => hfa; case => hfb.
|
||||
- move : hfa hfb h.
|
||||
case : a; case : b => //=; eauto 5 using A_Conf' with adom.
|
||||
+ hauto lq:on use:term_metric_abs db:adom.
|
||||
+ hauto lq:on use:term_metric_pair db:adom.
|
||||
+ hauto lq:on use:term_metric_bind db:adom.
|
||||
+ hauto lq:on use:term_metric_suc db:adom.
|
||||
- abstract : hneL n ih a b h hfa hfb.
|
||||
case : a hfa h => //=.
|
||||
+ hauto lq:on use:term_metric_abs_neu db:adom.
|
||||
+ scrush use:term_metric_pair_neu db:adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
- hauto q:on use:algo_dom_sym, term_metric_sym.
|
||||
- move {hneL}.
|
||||
case : b hfa hfb h => //=; case a => //=; eauto 5 using A_Conf' with adom.
|
||||
+ move => a0 b0 a1 b1 nfa0 nfa1.
|
||||
move /term_metric_app /(_ nfa0 nfa1) => [j][hj][ha]hb.
|
||||
apply A_NfNf. apply A_AppCong => //; eauto.
|
||||
have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred.
|
||||
eauto using algo_dom_r_algo_dom.
|
||||
+ move => p0 A0 p1 A1 neA0 neA1.
|
||||
have {}nfa0 : HRed.nf A0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf A1 by sfirstorder use:hne_no_hred.
|
||||
hauto lq:on use:term_metric_proj, algo_dom_r_algo_dom db:adom.
|
||||
+ move => P0 a0 b0 c0 P1 a1 b1 c1 nea0 nea1.
|
||||
have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred.
|
||||
hauto lq:on use:term_metric_ind, algo_dom_r_algo_dom db:adom.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue