Finish soundness proof
This commit is contained in:
parent
0c83044d72
commit
932662d5d9
2 changed files with 12 additions and 5 deletions
|
@ -1120,7 +1120,7 @@ Proof.
|
||||||
qauto l:on use:SemWt_SemLEq, Sub.transitive.
|
qauto l:on use:SemWt_SemLEq, Sub.transitive.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma ST_Univ n Γ i j :
|
Lemma ST_Univ' n Γ i j :
|
||||||
i < j ->
|
i < j ->
|
||||||
Γ ⊨ PUniv i : PTm n ∈ PUniv j.
|
Γ ⊨ PUniv i : PTm n ∈ PUniv j.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -1128,6 +1128,12 @@ Proof.
|
||||||
apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ.
|
apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma ST_Univ n Γ i :
|
||||||
|
Γ ⊨ PUniv i : PTm n ∈ PUniv (S i).
|
||||||
|
Proof.
|
||||||
|
apply ST_Univ'. lia.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma SSu_Univ n Γ i j :
|
Lemma SSu_Univ n Γ i j :
|
||||||
i <= j ->
|
i <= j ->
|
||||||
Γ ⊨ PUniv i : PTm n ≲ PUniv j.
|
Γ ⊨ PUniv i : PTm n ≲ PUniv j.
|
||||||
|
@ -1227,4 +1233,4 @@ Qed.
|
||||||
|
|
||||||
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
||||||
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
||||||
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SemWff_nil SemWff_cons : sem.
|
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ : sem.
|
||||||
|
|
|
@ -5,7 +5,8 @@ From Hammer Require Import Tactics.
|
||||||
Theorem fundamental_theorem :
|
Theorem fundamental_theorem :
|
||||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> ⊨ Γ) /\
|
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> ⊨ Γ) /\
|
||||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A).
|
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||||
apply wt_mutual; eauto with sem;[idtac].
|
(forall n Γ (a b : PTm n), Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||||
hauto l:on use:SE_Pair.
|
apply wt_mutual; eauto with sem; [hauto l:on use:SE_Pair].
|
||||||
|
Unshelve. all : exact 0.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue