Finish a few cases of eta postponement
This commit is contained in:
parent
d925a8bcaa
commit
9134cfec8a
1 changed files with 140 additions and 0 deletions
|
@ -885,6 +885,12 @@ Module NeERed.
|
|||
move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_nonelim.
|
||||
Qed.
|
||||
|
||||
Lemma ToERed : forall n, (forall (a b : PTm n), R_elim a b -> ERed.R a b) /\
|
||||
(forall (a b : PTm n), R_nonelim a b -> ERed.R a b).
|
||||
Proof.
|
||||
apply ered_mutual; qauto l:on ctrs:ERed.R.
|
||||
Qed.
|
||||
|
||||
End NeERed.
|
||||
|
||||
Module Type NoForbid.
|
||||
|
@ -1081,6 +1087,140 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
- hauto lq:on ctrs:rtc, NeERed.R_nonelim.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma eta_postponement n a b c :
|
||||
@P n a ->
|
||||
ERed.R a b ->
|
||||
RRed.R b c ->
|
||||
exists d, rtc RRed.R a d /\ ERed.R d c.
|
||||
Proof.
|
||||
move => + h.
|
||||
move : c.
|
||||
elim : n a b /h => //=.
|
||||
- move => n a0 a1 ha iha c /[dup] hP /P_AbsInv /P_AppInv [/P_renaming hP' _] hc.
|
||||
move : iha (hP') (hc); repeat move/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PAbs (PApp (ren_PTm shift d) (VarPTm var_zero))).
|
||||
split. hauto lq:on rew:off ctrs:rtc use:RReds.AbsCong, RReds.AppCong, RReds.renaming.
|
||||
hauto lq:on ctrs:ERed.R.
|
||||
- move => n a0 a1 ha iha c /P_PairInv [/P_ProjInv + _].
|
||||
move /iha => /[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PPair (PProj PL d) (PProj PR d)).
|
||||
hauto lq:on ctrs:ERed.R use:RReds.PairCong, RReds.ProjCong.
|
||||
- move => n a0 a1 ha iha c /P_AbsInv /[swap].
|
||||
elim /RRed.inv => //=_.
|
||||
move => a2 a3 + [? ?]. subst.
|
||||
move : iha; repeat move/[apply].
|
||||
hauto lq:on use:RReds.AbsCong ctrs:ERed.R.
|
||||
- move => n a0 a1 b0 b1 ha iha hb ihb c hP.
|
||||
elim /RRed.inv => //= _.
|
||||
+ move => a2 b2 [*]. subst.
|
||||
have [hP' hP''] : P a0 /\ P b0 by sfirstorder use:P_AppInv.
|
||||
move {iha ihb}.
|
||||
move /η_split /(_ hP') : ha.
|
||||
move => [b [h0 h1]].
|
||||
inversion h1; subst.
|
||||
* inversion H0; subst.
|
||||
exists (subst_PTm (scons b0 VarPTm) a3).
|
||||
split; last by scongruence use:ERed.morphing.
|
||||
apply : relations.rtc_transitive.
|
||||
apply RReds.AppCong.
|
||||
eassumption.
|
||||
apply rtc_refl.
|
||||
apply : rtc_l.
|
||||
apply RRed.AppCong0. apply RRed.AbsCong. simpl. apply RRed.AppAbs.
|
||||
asimpl.
|
||||
apply rtc_once.
|
||||
apply RRed.AppAbs.
|
||||
* exfalso.
|
||||
move : hP h0. clear => hP h0.
|
||||
have : rtc RRed.R (PApp a0 b0) (PApp (PPair (PProj PL a1) (PProj PR a1)) b0)
|
||||
by qauto l:on ctrs:rtc use:RReds.AppCong.
|
||||
move : P_RReds hP. repeat move/[apply].
|
||||
sfirstorder use:P_AppPair.
|
||||
* exists (subst_PTm (scons b0 VarPTm) a1).
|
||||
split.
|
||||
apply : rtc_r; last by apply RRed.AppAbs.
|
||||
hauto lq:on ctrs:rtc use:RReds.AppCong.
|
||||
hauto l:on inv:option use:ERed.morphing,NeERed.ToERed.
|
||||
+ move => a2 a3 b2 ha2 [*]. subst.
|
||||
move : iha (ha2) {ihb} => /[apply].
|
||||
have : P a0 by sfirstorder use:P_AppInv.
|
||||
move /[swap]/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PApp d b0).
|
||||
hauto lq:on ctrs:ERed.R, rtc use:RReds.AppCong.
|
||||
+ move => a2 b0 b1 hb [*]. subst.
|
||||
sauto lq:on.
|
||||
- move => n a b0 b1 hb ihb Γ c A hu hu'.
|
||||
elim /RRed.inv : hu' => //=_.
|
||||
+ move => A0 a0 b2 [*]. subst.
|
||||
admit.
|
||||
+ sauto lq:on.
|
||||
+ move => a0 b2 b3 hb0 [*]. subst.
|
||||
have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt.
|
||||
move : ihb hb0. repeat move/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PApp a d).
|
||||
split. admit.
|
||||
sauto lq:on.
|
||||
- move => n a0 a1 b ha iha Γ u A hu.
|
||||
elim / RRed.inv => //= _.
|
||||
+ move => a2 a3 b0 h [*]. subst.
|
||||
have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt.
|
||||
move : iha h. repeat move/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PPair d b).
|
||||
split. admit.
|
||||
sauto lq:on.
|
||||
+ move => a2 b0 b1 h [*]. subst.
|
||||
sauto lq:on.
|
||||
- move => n a b0 b1 hb ihb Γ c A hu.
|
||||
elim / RRed.inv => //=_.
|
||||
move => a0 a1 b2 ha [*]. subst.
|
||||
+ sauto lq:on.
|
||||
+ move => a0 b2 b3 hb0 [*]. subst.
|
||||
have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt.
|
||||
move : ihb hb0. repeat move/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PPair a d).
|
||||
split. admit.
|
||||
sauto lq:on.
|
||||
- move => n p a0 a1 ha iha Γ u A hu.
|
||||
elim / RRed.inv => //=_.
|
||||
+ move => p0 a2 b0 [*]. subst.
|
||||
inversion ha; subst.
|
||||
* exfalso.
|
||||
move : hu. clear. hauto q:on inv:Wt.
|
||||
* exists (match p with
|
||||
| PL => a2
|
||||
| PR => b0
|
||||
end).
|
||||
split. apply : rtc_l.
|
||||
apply RRed.ProjPair.
|
||||
apply rtc_once. clear.
|
||||
hauto lq:on use:RRed.ProjPair.
|
||||
admit.
|
||||
* eexists.
|
||||
split. apply rtc_once.
|
||||
apply RRed.ProjPair.
|
||||
admit.
|
||||
* eexists.
|
||||
split. apply rtc_once.
|
||||
apply RRed.ProjPair.
|
||||
admit.
|
||||
+ move => p0 a2 a3 ha0 [*]. subst.
|
||||
have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt.
|
||||
move : iha ha0; repeat move/[apply].
|
||||
move => [d [h0 h1]].
|
||||
exists (PProj p d).
|
||||
split.
|
||||
admit.
|
||||
sauto lq:on.
|
||||
Admitted.
|
||||
|
||||
|
||||
End UniqueNF.
|
||||
|
||||
Lemma η_nf_to_ne n (a0 a1 : PTm n) :
|
||||
|
|
Loading…
Add table
Reference in a new issue