Write down the statement for ST_Ind
This commit is contained in:
parent
4e9a5582d2
commit
8df64ef989
1 changed files with 37 additions and 0 deletions
|
@ -1282,6 +1282,43 @@ Proof.
|
|||
apply ST_Univ'. lia.
|
||||
Qed.
|
||||
|
||||
Lemma ST_Nat n Γ i :
|
||||
Γ ⊨ PNat : PTm n ∈ PUniv i.
|
||||
Proof.
|
||||
move => ?. apply SemWt_Univ. move => ρ hρ.
|
||||
eexists. by apply InterpUniv_Nat.
|
||||
Qed.
|
||||
|
||||
Lemma ST_Zero n Γ :
|
||||
Γ ⊨ PZero : PTm n ∈ PNat.
|
||||
Proof.
|
||||
move => ρ hρ. exists 0, SNat. simpl. split.
|
||||
apply InterpUniv_Nat.
|
||||
apply S_Zero.
|
||||
Qed.
|
||||
|
||||
Lemma ST_Suc n Γ (a : PTm n) :
|
||||
Γ ⊨ a ∈ PNat ->
|
||||
Γ ⊨ PSuc a ∈ PNat.
|
||||
Proof.
|
||||
move => ha ρ.
|
||||
move : ha => /[apply] /=.
|
||||
move => [k][PA][h0 h1].
|
||||
move /InterpUniv_Nat_inv : h0 => ?. subst.
|
||||
exists 0, SNat. split. apply InterpUniv_Nat.
|
||||
eauto using S_Suc.
|
||||
Qed.
|
||||
|
||||
Lemma ST_Ind n Γ P (a : PTm n) b c i :
|
||||
funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P ∈ PUniv i ->
|
||||
Γ ⊨ a ∈ PNat ->
|
||||
Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊨ PInd P a b c ∈ subst_PTm (scons a VarPTm) P.
|
||||
Proof.
|
||||
|
||||
Admitted.
|
||||
|
||||
Lemma SSu_Univ n Γ i j :
|
||||
i <= j ->
|
||||
Γ ⊨ PUniv i : PTm n ≲ PUniv j.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue