Prove the soundness of the computable equality

This commit is contained in:
Yiyun Liu 2025-03-03 23:46:41 -05:00
parent 36d1f95d65
commit 87f6dcd870
3 changed files with 440 additions and 67 deletions

View file

@ -1,58 +1,145 @@
From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax
common typing preservation admissible fp_red structural soundness.
Require Import algorithmic.
From stdpp Require Import relations (rtc(..), nsteps(..)).
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Require Import ssreflect ssrbool.
Import Logic (inspect).
Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
Require Import ssreflect ssrbool.
From Hammer Require Import Tactics.
Definition tm_nonconf (a b : PTm) : bool :=
match a, b with
| PAbs _, _ => ishne b || isabs b
| _, PAbs _ => ishne a
| VarPTm _, VarPTm _ => true
| PPair _ _, _ => ishne b || ispair b
| _, PPair _ _ => ishne a
| PZero, PZero => true
| PSuc _, PSuc _ => true
| PApp _ _, PApp _ _ => ishne a && ishne b
| PProj _ _, PProj _ _ => ishne a && ishne b
| PInd _ _ _ _, PInd _ _ _ _ => ishne a && ishne b
| PNat, PNat => true
| PUniv _, PUniv _ => true
| PBind _ _ _, PBind _ _ _ => true
| _,_=> false
end.
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
Inductive eq_view : PTm -> PTm -> Type :=
| V_AbsAbs a b :
eq_view (PAbs a) (PAbs b)
| V_AbsNeu a b :
~~ isabs b ->
eq_view (PAbs a) b
| V_NeuAbs a b :
~~ isabs a ->
eq_view a (PAbs b)
| V_VarVar i j :
eq_view (VarPTm i) (VarPTm j)
| V_PairPair a0 b0 a1 b1 :
eq_view (PPair a0 b0) (PPair a1 b1)
| V_PairNeu a0 b0 u :
~~ ispair u ->
eq_view (PPair a0 b0) u
| V_NeuPair u a1 b1 :
~~ ispair u ->
eq_view u (PPair a1 b1)
| V_ZeroZero :
eq_view PZero PZero
| V_SucSuc a b :
eq_view (PSuc a) (PSuc b)
| V_AppApp u0 b0 u1 b1 :
eq_view (PApp u0 b0) (PApp u1 b1)
| V_ProjProj p0 u0 p1 u1 :
eq_view (PProj p0 u0) (PProj p1 u1)
| V_IndInd P0 u0 b0 c0 P1 u1 b1 c1 :
eq_view (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
| V_NatNat :
eq_view PNat PNat
| V_BindBind p0 A0 B0 p1 A1 B1 :
eq_view (PBind p0 A0 B0) (PBind p1 A1 B1)
| V_UnivUniv i j :
eq_view (PUniv i) (PUniv j)
| V_Others a b :
eq_view a b.
Equations tm_to_eq_view (a b : PTm) : eq_view a b :=
tm_to_eq_view (PAbs a) (PAbs b) := V_AbsAbs a b;
tm_to_eq_view (PAbs a) b := V_AbsNeu a b _;
tm_to_eq_view a (PAbs b) := V_NeuAbs a b _;
tm_to_eq_view (VarPTm i) (VarPTm j) := V_VarVar i j;
tm_to_eq_view (PPair a0 b0) (PPair a1 b1) := V_PairPair a0 b0 a1 b1;
tm_to_eq_view (PPair a0 b0) u := V_PairNeu a0 b0 u _;
tm_to_eq_view u (PPair a1 b1) := V_NeuPair u a1 b1 _;
tm_to_eq_view PZero PZero := V_ZeroZero;
tm_to_eq_view (PSuc a) (PSuc b) := V_SucSuc a b;
tm_to_eq_view (PApp a0 b0) (PApp a1 b1) := V_AppApp a0 b0 a1 b1;
tm_to_eq_view (PProj p0 b0) (PProj p1 b1) := V_ProjProj p0 b0 p1 b1;
tm_to_eq_view (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1) := V_IndInd P0 u0 b0 c0 P1 u1 b1 c1;
tm_to_eq_view PNat PNat := V_NatNat;
tm_to_eq_view (PUniv i) (PUniv j) := V_UnivUniv i j;
tm_to_eq_view (PBind p0 A0 B0) (PBind p1 A1 B1) := V_BindBind p0 A0 B0 p1 A1 B1;
tm_to_eq_view a b := V_Others a b.
Inductive algo_dom : PTm -> PTm -> Prop :=
| A_AbsAbs a b :
algo_dom a b ->
algo_dom_r a b ->
(* --------------------- *)
algo_dom (PAbs a) (PAbs b)
| A_AbsNeu a u :
ishne u ->
algo_dom a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
(* --------------------- *)
algo_dom (PAbs a) u
| A_NeuAbs a u :
ishne u ->
algo_dom (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
(* --------------------- *)
algo_dom u (PAbs a)
| A_PairPair a0 a1 b0 b1 :
algo_dom a0 a1 ->
algo_dom b0 b1 ->
algo_dom_r a0 a1 ->
algo_dom_r b0 b1 ->
(* ---------------------------- *)
algo_dom (PPair a0 b0) (PPair a1 b1)
| A_PairNeu a0 a1 u :
ishne u ->
algo_dom a0 (PProj PL u) ->
algo_dom a1 (PProj PR u) ->
algo_dom_r a0 (PProj PL u) ->
algo_dom_r a1 (PProj PR u) ->
(* ----------------------- *)
algo_dom (PPair a0 a1) u
| A_NeuPair a0 a1 u :
ishne u ->
algo_dom (PProj PL u) a0 ->
algo_dom (PProj PR u) a1 ->
algo_dom_r (PProj PL u) a0 ->
algo_dom_r (PProj PR u) a1 ->
(* ----------------------- *)
algo_dom u (PPair a0 a1)
| A_ZeroZero :
algo_dom PZero PZero
| A_SucSuc a0 a1 :
algo_dom_r a0 a1 ->
algo_dom (PSuc a0) (PSuc a1)
| A_UnivCong i j :
(* -------------------------- *)
algo_dom (PUniv i) (PUniv j)
| A_BindCong p0 p1 A0 A1 B0 B1 :
algo_dom A0 A1 ->
algo_dom B0 B1 ->
algo_dom_r A0 A1 ->
algo_dom_r B0 B1 ->
(* ---------------------------- *)
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
| A_NatCong :
algo_dom PNat PNat
| A_VarCong i j :
(* -------------------------- *)
algo_dom (VarPTm i) (VarPTm j)
@ -68,78 +155,197 @@ Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
algo_dom a0 a1 ->
algo_dom_r a0 a1 ->
(* ------------------------- *)
algo_dom (PApp u0 a0) (PApp u1 a1)
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
ishne u0 ->
ishne u1 ->
algo_dom_r P0 P1 ->
algo_dom u0 u1 ->
algo_dom_r b0 b1 ->
algo_dom_r c0 c1 ->
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
with algo_dom_r : PTm -> PTm -> Prop :=
| A_NfNf a b :
algo_dom a b ->
algo_dom_r a b
| A_HRedL a a' b :
HRed.R a a' ->
algo_dom a' b ->
algo_dom_r a' b ->
(* ----------------------- *)
algo_dom a b
algo_dom_r a b
| A_HRedR a b b' :
ishne a \/ ishf a ->
HRed.R b b' ->
algo_dom a b' ->
algo_dom_r a b' ->
(* ----------------------- *)
algo_dom a b.
algo_dom_r a b.
Definition fin_eq {n} (i j : fin n) : bool.
Lemma algo_dom_hf_hne (a b : PTm) :
algo_dom a b ->
(ishf a \/ ishne a) /\ (ishf b \/ ishne b).
Proof.
induction n.
- by exfalso.
- refine (match i , j with
| None, None => true
| Some i, Some j => IHn i j
| _, _ => false
end).
induction 1 =>//=; hauto lq:on.
Qed.
Lemma hf_no_hred (a b : PTm) :
ishf a ->
HRed.R a b ->
False.
Proof. hauto l:on inv:HRed.R. Qed.
Lemma hne_no_hred (a b : PTm) :
ishne a ->
HRed.R a b ->
False.
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
Derive Signature for algo_dom algo_dom_r.
Fixpoint hred (a : PTm) : option (PTm) :=
match a with
| VarPTm i => None
| PAbs a => None
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
| PApp a b =>
match hred a with
| Some a => Some (PApp a b)
| None => None
end
| PPair a b => None
| PProj p (PPair a b) => if p is PL then Some a else Some b
| PProj p a =>
match hred a with
| Some a => Some (PProj p a)
| None => None
end
| PUniv i => None
| PBind p A B => None
| PNat => None
| PZero => None
| PSuc a => None
| PInd P PZero b c => Some b
| PInd P (PSuc a) b c =>
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
| PInd P a b c =>
match hred a with
| Some a => Some (PInd P a b c)
| None => None
end
end.
Lemma hred_complete (a b : PTm) :
HRed.R a b -> hred a = Some b.
Proof.
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
Qed.
Lemma hred_sound (a b : PTm):
hred a = Some b -> HRed.R a b.
Proof.
elim : a b; hauto q:on dep:on ctrs:HRed.R.
Qed.
Lemma hred_deter (a b0 b1 : PTm) :
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
Proof.
move /hred_complete => + /hred_complete. congruence.
Qed.
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
destruct (hred a) eqn:eq.
right. exists p. by apply hred_sound in eq.
left. move => b /hred_complete. congruence.
Defined.
Lemma fin_eq_dec {n} (i j : fin n) :
Bool.reflect (i = j) (fin_eq i j).
Proof.
revert i j. induction n.
- destruct i.
- destruct i; destruct j.
+ specialize (IHn f f0).
inversion IHn; subst.
simpl. rewrite -H.
apply ReflectT.
reflexivity.
simpl. rewrite -H.
apply ReflectF.
injection. tauto.
+ by apply ReflectF.
+ by apply ReflectF.
+ by apply ReflectT.
Defined.
Ltac check_equal_triv :=
intros;subst;
lazymatch goal with
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
| [h : algo_dom _ _ |- _] => try (inversion h; by subst)
| _ => idtac
end.
Ltac solve_check_equal :=
try solve [intros *;
match goal with
| [|- _ = _] => sauto
| _ => idtac
end].
Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
Equations check_equal (a b : PTm) (h : algo_dom a b) :
bool by struct h :=
check_equal a b h with (@idP (ishne a || ishf a)) := {
| Bool.ReflectT _ _ => _
| Bool.ReflectF _ _ => _
}.
check_equal a b h with tm_to_eq_view a b :=
check_equal _ _ h (V_VarVar i j) := nat_eqdec i j;
check_equal _ _ h (V_AbsAbs a b) := check_equal_r a b ltac:(check_equal_triv);
check_equal _ _ h (V_AbsNeu a b h') := check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) ltac:(check_equal_triv);
check_equal _ _ h (V_NeuAbs a b _) := check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b ltac:(check_equal_triv);
check_equal _ _ h (V_PairPair a0 b0 a1 b1) :=
check_equal_r a0 a1 ltac:(check_equal_triv) && check_equal_r b0 b1 ltac:(check_equal_triv);
check_equal _ _ h (V_PairNeu a0 b0 u _) :=
check_equal_r a0 (PProj PL u) ltac:(check_equal_triv) && check_equal_r b0 (PProj PR u) ltac:(check_equal_triv);
check_equal _ _ h (V_NeuPair u a1 b1 _) :=
check_equal_r (PProj PL u) a1 ltac:(check_equal_triv) && check_equal_r (PProj PR u) b1 ltac:(check_equal_triv);
check_equal _ _ h V_NatNat := true;
check_equal _ _ h V_ZeroZero := true;
check_equal _ _ h (V_SucSuc a b) := check_equal_r a b ltac:(check_equal_triv);
check_equal _ _ h (V_ProjProj p0 a p1 b) :=
PTag_eqdec p0 p1 && check_equal a b ltac:(check_equal_triv);
check_equal _ _ h (V_AppApp a0 b0 a1 b1) :=
check_equal a0 a1 ltac:(check_equal_triv) && check_equal_r b0 b1 ltac:(check_equal_triv);
check_equal _ _ h (V_IndInd P0 u0 b0 c0 P1 u1 b1 c1) :=
check_equal_r P0 P1 ltac:(check_equal_triv) &&
check_equal u0 u1 ltac:(check_equal_triv) &&
check_equal_r b0 b1 ltac:(check_equal_triv) &&
check_equal_r c0 c1 ltac:(check_equal_triv);
check_equal _ _ h (V_UnivUniv i j) := nat_eqdec i j;
check_equal _ _ h (V_BindBind p0 A0 B0 p1 A1 B1) :=
BTag_eqdec p0 p1 && check_equal_r A0 A1 ltac:(check_equal_triv) && check_equal_r B0 B1 ltac:(check_equal_triv);
check_equal _ _ _ _ := false
(* check_equal a b h := false; *)
with check_equal_r (a b : PTm) (h0 : algo_dom_r a b) :
bool by struct h0 :=
check_equal_r a b h with (fancy_hred a) :=
check_equal_r a b h (inr a') := check_equal_r (proj1_sig a') b _;
check_equal_r a b h (inl h') with (fancy_hred b) :=
| inr b' := check_equal_r a (proj1_sig b') _;
| inl h'' := check_equal a b _.
(* check_equal (VarPTm i) (VarPTm j) h := fin_eq i j; *)
(* check_equal (PAbs a) (PAbs b) h := check_equal a b _; *)
(* check_equal (PPair a0 b0) (PPair a1 b1) h := *)
(* check_equal a0 b0 _ && check_equal a1 b1 _; *)
(* check_equal (PUniv i) (PUniv j) _ := _; *)
Next Obligation.
simpl.
intros ih.
Admitted.
intros.
inversion h; subst => //=.
exfalso. hauto l:on use:hred_complete unfold:HRed.nf.
exfalso. hauto l:on use:hred_complete unfold:HRed.nf.
Defined.
Search (Bool.reflect (is_true _) _).
Check idP.
Next Obligation.
intros.
destruct h.
exfalso. apply algo_dom_hf_hne in H0.
destruct H0 as [h0 h1].
sfirstorder use:hf_no_hred, hne_no_hred.
exfalso. sfirstorder.
assert ( b' = b'0)by eauto using hred_deter. subst.
apply h.
Defined.
Definition metric {n} k (a b : PTm n) :=
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\
nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.
Next Obligation.
simpl. intros.
inversion h; subst =>//=.
move {h}. hauto lq:on use:algo_dom_hf_hne, hf_no_hred, hne_no_hred, hred_sound.
assert (a' = a'0) by eauto using hred_deter, hred_sound. by subst.
exfalso. sfirstorder use:hne_no_hred, hf_no_hred.
Defined.
Search (nat -> nat -> bool).
Next Obligation.
qauto inv:algo_dom, algo_dom_r.
Defined.