Add new definition of algo_dom
This commit is contained in:
parent
437c97455e
commit
849d19708e
4 changed files with 599 additions and 648 deletions
|
@ -1,4 +1,4 @@
|
|||
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect.
|
||||
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
|
||||
From Equations Require Import Equations.
|
||||
Derive NoConfusion for nat PTag BTag PTm.
|
||||
Derive EqDec for BTag PTag PTm.
|
||||
|
@ -6,6 +6,7 @@ From Ltac2 Require Ltac2.
|
|||
Import Ltac2.Notations.
|
||||
Import Ltac2.Control.
|
||||
From Hammer Require Import Tactics.
|
||||
From stdpp Require Import relations (rtc(..)).
|
||||
|
||||
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
||||
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
||||
|
@ -119,6 +120,28 @@ Definition isabs (a : PTm) :=
|
|||
| _ => false
|
||||
end.
|
||||
|
||||
Definition tm_nonconf (a b : PTm) : bool :=
|
||||
match a, b with
|
||||
| PAbs _, _ => (~~ ishf b) || isabs b
|
||||
| _, PAbs _ => ~~ ishf a
|
||||
| VarPTm _, VarPTm _ => true
|
||||
| PPair _ _, _ => (~~ ishf b) || ispair b
|
||||
| _, PPair _ _ => ~~ ishf a
|
||||
| PZero, PZero => true
|
||||
| PSuc _, PSuc _ => true
|
||||
| PApp _ _, PApp _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| PProj _ _, PProj _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| PNat, PNat => true
|
||||
| PUniv _, PUniv _ => true
|
||||
| PBind _ _ _, PBind _ _ _ => true
|
||||
| _,_=> false
|
||||
end.
|
||||
|
||||
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
|
||||
|
||||
|
||||
|
||||
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
||||
ishf (ren_PTm ξ a) = ishf a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
@ -175,3 +198,390 @@ Module HRed.
|
|||
|
||||
Definition nf a := forall b, ~ R a b.
|
||||
End HRed.
|
||||
|
||||
Inductive algo_dom : PTm -> PTm -> Prop :=
|
||||
| A_AbsAbs a b :
|
||||
algo_dom_r a b ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) (PAbs b)
|
||||
|
||||
| A_AbsNeu a u :
|
||||
ishne u ->
|
||||
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) u
|
||||
|
||||
| A_NeuAbs a u :
|
||||
ishne u ->
|
||||
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
|
||||
(* --------------------- *)
|
||||
algo_dom u (PAbs a)
|
||||
|
||||
| A_PairPair a0 a1 b0 b1 :
|
||||
algo_dom_r a0 a1 ->
|
||||
algo_dom_r b0 b1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PPair a0 b0) (PPair a1 b1)
|
||||
|
||||
| A_PairNeu a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom_r a0 (PProj PL u) ->
|
||||
algo_dom_r a1 (PProj PR u) ->
|
||||
(* ----------------------- *)
|
||||
algo_dom (PPair a0 a1) u
|
||||
|
||||
| A_NeuPair a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom_r (PProj PL u) a0 ->
|
||||
algo_dom_r (PProj PR u) a1 ->
|
||||
(* ----------------------- *)
|
||||
algo_dom u (PPair a0 a1)
|
||||
|
||||
| A_ZeroZero :
|
||||
algo_dom PZero PZero
|
||||
|
||||
| A_SucSuc a0 a1 :
|
||||
algo_dom_r a0 a1 ->
|
||||
algo_dom (PSuc a0) (PSuc a1)
|
||||
|
||||
| A_UnivCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom (PUniv i) (PUniv j)
|
||||
|
||||
| A_BindCong p0 p1 A0 A1 B0 B1 :
|
||||
algo_dom_r A0 A1 ->
|
||||
algo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
|
||||
|
||||
| A_NatCong :
|
||||
algo_dom PNat PNat
|
||||
|
||||
| A_NeuNeu a b :
|
||||
algo_dom_neu a b ->
|
||||
algo_dom a b
|
||||
|
||||
| A_Conf a b :
|
||||
HRed.nf a ->
|
||||
HRed.nf b ->
|
||||
tm_conf a b ->
|
||||
algo_dom a b
|
||||
|
||||
with algo_dom_neu : PTm -> PTm -> Prop :=
|
||||
| A_VarCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom_neu (VarPTm i) (VarPTm j)
|
||||
|
||||
| A_AppCong u0 u1 a0 a1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom_neu u0 u1 ->
|
||||
algo_dom_r a0 a1 ->
|
||||
(* ------------------------- *)
|
||||
algo_dom_neu (PApp u0 a0) (PApp u1 a1)
|
||||
|
||||
| A_ProjCong p0 p1 u0 u1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom_neu u0 u1 ->
|
||||
(* --------------------- *)
|
||||
algo_dom_neu (PProj p0 u0) (PProj p1 u1)
|
||||
|
||||
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom_r P0 P1 ->
|
||||
algo_dom_neu u0 u1 ->
|
||||
algo_dom_r b0 b1 ->
|
||||
algo_dom_r c0 c1 ->
|
||||
algo_dom_neu (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
||||
|
||||
with algo_dom_r : PTm -> PTm -> Prop :=
|
||||
| A_NfNf a b :
|
||||
algo_dom a b ->
|
||||
algo_dom_r a b
|
||||
|
||||
| A_HRedL a a' b :
|
||||
HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
(* ----------------------- *)
|
||||
algo_dom_r a b
|
||||
|
||||
| A_HRedR a b b' :
|
||||
HRed.nf a ->
|
||||
HRed.R b b' ->
|
||||
algo_dom_r a b' ->
|
||||
(* ----------------------- *)
|
||||
algo_dom_r a b.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algo_neu_ind := Induction for algo_dom_neu Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algo_neu_ind, algor_ind.
|
||||
#[export]Hint Constructors algo_dom algo_dom_neu algo_dom_r : adom.
|
||||
|
||||
Definition stm_nonconf a b :=
|
||||
match a, b with
|
||||
| PUniv _, PUniv _ => true
|
||||
| PBind PPi _ _, PBind PPi _ _ => true
|
||||
| PBind PSig _ _, PBind PSig _ _ => true
|
||||
| PNat, PNat => true
|
||||
| VarPTm _, VarPTm _ => true
|
||||
| PApp _ _, PApp _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| PProj _ _, PProj _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => (~~ ishf a) && (~~ ishf b)
|
||||
| _, _ => false
|
||||
end.
|
||||
|
||||
Lemma stm_tm_nonconf a b :
|
||||
stm_nonconf a b -> tm_nonconf a b.
|
||||
Proof. apply /implyP.
|
||||
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
|
||||
Qed.
|
||||
|
||||
Definition stm_conf a b := ~~ stm_nonconf a b.
|
||||
|
||||
Lemma tm_stm_conf a b :
|
||||
tm_conf a b -> stm_conf a b.
|
||||
Proof.
|
||||
rewrite /tm_conf /stm_conf.
|
||||
apply /contra /stm_tm_nonconf.
|
||||
Qed.
|
||||
|
||||
Inductive salgo_dom : PTm -> PTm -> Prop :=
|
||||
| S_UnivCong i j :
|
||||
(* -------------------------- *)
|
||||
salgo_dom (PUniv i) (PUniv j)
|
||||
|
||||
| S_PiCong A0 A1 B0 B1 :
|
||||
salgo_dom_r A1 A0 ->
|
||||
salgo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
|
||||
|
||||
| S_SigCong A0 A1 B0 B1 :
|
||||
salgo_dom_r A0 A1 ->
|
||||
salgo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
|
||||
|
||||
| S_NatCong :
|
||||
salgo_dom PNat PNat
|
||||
|
||||
| S_NeuNeu a b :
|
||||
algo_dom_neu a b ->
|
||||
salgo_dom a b
|
||||
|
||||
| S_Conf a b :
|
||||
HRed.nf a ->
|
||||
HRed.nf b ->
|
||||
stm_conf a b ->
|
||||
salgo_dom a b
|
||||
|
||||
with salgo_dom_r : PTm -> PTm -> Prop :=
|
||||
| S_NfNf a b :
|
||||
salgo_dom a b ->
|
||||
salgo_dom_r a b
|
||||
|
||||
| S_HRedL a a' b :
|
||||
HRed.R a a' ->
|
||||
salgo_dom_r a' b ->
|
||||
(* ----------------------- *)
|
||||
salgo_dom_r a b
|
||||
|
||||
| S_HRedR a b b' :
|
||||
HRed.nf a ->
|
||||
HRed.R b b' ->
|
||||
salgo_dom_r a b' ->
|
||||
(* ----------------------- *)
|
||||
salgo_dom_r a b.
|
||||
|
||||
Lemma hf_no_hred (a b : PTm) :
|
||||
ishf a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Lemma hne_no_hred (a b : PTm) :
|
||||
ishne a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Ltac2 destruct_salgo () :=
|
||||
lazy_match! goal with
|
||||
| [h : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
|
||||
if Constr.is_var a then destruct $a; ltac1:(done) else ()
|
||||
| [|- is_true (stm_conf _ _)] =>
|
||||
unfold stm_conf; ltac1:(done)
|
||||
end.
|
||||
|
||||
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
|
||||
|
||||
Lemma algo_dom_r_inv a b :
|
||||
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
algo_dom_r a b.
|
||||
induction 1; sfirstorder use:A_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
algo_dom a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
||||
Proof. case : a; case : b => //=. Qed.
|
||||
|
||||
Lemma algo_dom_neu_hne (a b : PTm) :
|
||||
algo_dom_neu a b ->
|
||||
ishne a /\ ishne b.
|
||||
Proof. inversion 1; subst => //=. Qed.
|
||||
|
||||
Lemma algo_dom_no_hred (a b : PTm) :
|
||||
algo_dom a b ->
|
||||
HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred use:algo_dom_neu_hne lq:on unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma A_HRedR' a b b' :
|
||||
HRed.R b b' ->
|
||||
algo_dom_r a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof.
|
||||
move => hb /algo_dom_r_inv.
|
||||
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
||||
hauto lq:on use:A_HRedsL, A_HRedsR.
|
||||
Qed.
|
||||
|
||||
Lemma algo_dom_sym :
|
||||
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
||||
(forall a b, algo_dom_neu a b -> algo_dom_neu b a) /\
|
||||
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
|
||||
Qed.
|
||||
|
||||
Lemma salgo_dom_r_inv a b :
|
||||
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
salgo_dom_r a' b ->
|
||||
salgo_dom_r a b.
|
||||
induction 1; sfirstorder use:S_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
salgo_dom a b' ->
|
||||
salgo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
|
||||
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
|
||||
|
||||
Lemma salgo_dom_no_hred (a b : PTm) :
|
||||
salgo_dom a b ->
|
||||
HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_neu_hne lq:on unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedR' a b b' :
|
||||
HRed.R b b' ->
|
||||
salgo_dom_r a b' ->
|
||||
salgo_dom_r a b.
|
||||
Proof.
|
||||
move => hb /salgo_dom_r_inv.
|
||||
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
|
||||
hauto lq:on use:S_HRedsL, S_HRedsR.
|
||||
Qed.
|
||||
|
||||
Lemma algo_dom_salgo_dom :
|
||||
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
|
||||
(forall a b, algo_dom_neu a b -> True) /\
|
||||
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual => //=;
|
||||
try hauto lq:on ctrs:salgo_dom, algo_dom_neu, salgo_dom_r use:S_Conf, hne_no_hred, algo_dom_sym, tm_stm_conf, S_HRedR' inv:HRed.R unfold:HRed.nf solve+:destruct_salgo.
|
||||
- case;case; hauto lq:on ctrs:salgo_dom, algo_dom_neu, salgo_dom_r use:S_Conf, hne_no_hred, algo_dom_sym inv:HRed.R unfold:HRed.nf solve+:destruct_salgo.
|
||||
- move => a b ha hb /[dup] /tm_stm_conf h.
|
||||
rewrite tm_conf_sym => /tm_stm_conf h0.
|
||||
hauto l:on use:S_Conf inv:HRed.R unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Fixpoint hred (a : PTm) : option (PTm) :=
|
||||
match a with
|
||||
| VarPTm i => None
|
||||
| PAbs a => None
|
||||
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
|
||||
| PApp a b =>
|
||||
match hred a with
|
||||
| Some a => Some (PApp a b)
|
||||
| None => None
|
||||
end
|
||||
| PPair a b => None
|
||||
| PProj p (PPair a b) => if p is PL then Some a else Some b
|
||||
| PProj p a =>
|
||||
match hred a with
|
||||
| Some a => Some (PProj p a)
|
||||
| None => None
|
||||
end
|
||||
| PUniv i => None
|
||||
| PBind p A B => None
|
||||
| PNat => None
|
||||
| PZero => None
|
||||
| PSuc a => None
|
||||
| PInd P PZero b c => Some b
|
||||
| PInd P (PSuc a) b c =>
|
||||
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||
| PInd P a b c =>
|
||||
match hred a with
|
||||
| Some a => Some (PInd P a b c)
|
||||
| None => None
|
||||
end
|
||||
end.
|
||||
|
||||
Lemma hred_complete (a b : PTm) :
|
||||
HRed.R a b -> hred a = Some b.
|
||||
Proof.
|
||||
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
|
||||
Qed.
|
||||
|
||||
Lemma hred_sound (a b : PTm):
|
||||
hred a = Some b -> HRed.R a b.
|
||||
Proof.
|
||||
elim : a b; hauto q:on dep:on ctrs:HRed.R.
|
||||
Qed.
|
||||
|
||||
Lemma hred_deter (a b0 b1 : PTm) :
|
||||
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
|
||||
Proof.
|
||||
move /hred_complete => + /hred_complete. congruence.
|
||||
Qed.
|
||||
|
||||
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
|
||||
destruct (hred a) eqn:eq.
|
||||
right. exists p. by apply hred_sound in eq.
|
||||
left. move => b /hred_complete. congruence.
|
||||
Defined.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue