Add admissible simple rules
This commit is contained in:
parent
8f8f428562
commit
8105b5c410
3 changed files with 96 additions and 31 deletions
|
@ -1,3 +1,47 @@
|
|||
Require Import Autosubst2.fintype Autosubst2.syntax.
|
||||
Require Import Autosubst2.fintype Autosubst2.syntax ssreflect.
|
||||
From Ltac2 Require Ltac2.
|
||||
Import Ltac2.Notations.
|
||||
Import Ltac2.Control.
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) :=
|
||||
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i).
|
||||
|
||||
Local Ltac2 rec solve_anti_ren () :=
|
||||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||||
intro $x;
|
||||
lazy_match! Constr.type (Control.hyp x) with
|
||||
| fin _ -> _ _ => (ltac1:(case;hauto q:on depth:2))
|
||||
| _ => solve_anti_ren ()
|
||||
end.
|
||||
|
||||
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||||
|
||||
Lemma up_injective n m (ξ : fin n -> fin m) :
|
||||
(forall i j, ξ i = ξ j -> i = j) ->
|
||||
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j.
|
||||
Proof.
|
||||
sblast inv:option.
|
||||
Qed.
|
||||
|
||||
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||||
(forall i j, ξ i = ξ j -> i = j) ->
|
||||
ren_PTm ξ a = ren_PTm ξ b ->
|
||||
a = b.
|
||||
Proof.
|
||||
move : m ξ b.
|
||||
elim : n / a => //; try solve_anti_ren.
|
||||
|
||||
move => n a iha m ξ []//=.
|
||||
move => u hξ [h].
|
||||
apply iha in h. by subst.
|
||||
destruct i, j=>//=.
|
||||
hauto l:on.
|
||||
|
||||
move => n p A ihA B ihB m ξ []//=.
|
||||
move => b A0 B0 hξ [?]. subst.
|
||||
move => ?. have ? : A0 = A by firstorder. subst.
|
||||
move => ?. have : B = B0. apply : ihB; eauto.
|
||||
sauto.
|
||||
congruence.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue