Seems to work but takes a million years to type check
This commit is contained in:
parent
6c11f5560d
commit
7503dea251
5 changed files with 580 additions and 572 deletions
|
@ -1,13 +1,64 @@
|
|||
From Equations Require Import Equations.
|
||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax
|
||||
common typing preservation admissible fp_red structural soundness.
|
||||
Require Import algorithmic.
|
||||
From stdpp Require Import relations (rtc(..), nsteps(..)).
|
||||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
|
||||
Derive NoConfusion for nat PTag BTag PTm.
|
||||
|
||||
Require Import ssreflect ssrbool.
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
|
||||
Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
|
||||
Definition ishf (a : PTm) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| PAbs _ => true
|
||||
| PUniv _ => true
|
||||
| PBind _ _ _ => true
|
||||
| PNat => true
|
||||
| PSuc _ => true
|
||||
| PZero => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Fixpoint ishne (a : PTm) :=
|
||||
match a with
|
||||
| VarPTm _ => true
|
||||
| PApp a _ => ishne a
|
||||
| PProj _ a => ishne a
|
||||
| PBot => true
|
||||
| PInd _ n _ _ => ishne n
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Module HRed.
|
||||
Inductive R : PTm -> PTm -> Prop :=
|
||||
(****************** Beta ***********************)
|
||||
| AppAbs a b :
|
||||
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||||
|
||||
| ProjPair p a b :
|
||||
R (PProj p (PPair a b)) (if p is PL then a else b)
|
||||
|
||||
| IndZero P b c :
|
||||
R (PInd P PZero b c) b
|
||||
|
||||
| IndSuc P a b c :
|
||||
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||
|
||||
(*************** Congruence ********************)
|
||||
| AppCong a0 a1 b :
|
||||
R a0 a1 ->
|
||||
R (PApp a0 b) (PApp a1 b)
|
||||
| ProjCong p a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1)
|
||||
| IndCong P a0 a1 b c :
|
||||
R a0 a1 ->
|
||||
R (PInd P a0 b c) (PInd P a1 b c).
|
||||
|
||||
Definition nf a := forall b, ~ R a b.
|
||||
End HRed.
|
||||
|
||||
|
||||
Inductive algo_dom : PTm -> PTm -> Prop :=
|
||||
| A_AbsAbs a b :
|
||||
algo_dom_r a b ->
|
||||
(* --------------------- *)
|
||||
|
@ -74,7 +125,7 @@ Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
|
|||
(* ------------------------- *)
|
||||
algo_dom (PApp u0 a0) (PApp u1 a1)
|
||||
|
||||
with algo_dom_r {n} : PTm n -> PTm n -> Prop :=
|
||||
with algo_dom_r : PTm -> PTm -> Prop :=
|
||||
| A_NfNf a b :
|
||||
algo_dom a b ->
|
||||
algo_dom_r a b
|
||||
|
@ -92,67 +143,26 @@ with algo_dom_r {n} : PTm n -> PTm n -> Prop :=
|
|||
(* ----------------------- *)
|
||||
algo_dom_r a b.
|
||||
|
||||
Derive Signature for algo_dom algo_dom_r.
|
||||
Derive NoConfusion for PTm.
|
||||
Next Obligation.
|
||||
Admitted.
|
||||
Next Obligation.
|
||||
Admitted.
|
||||
|
||||
Derive Dependent Inversion adom_inv with (forall n (a b : PTm n), algo_dom a b) Sort Prop.
|
||||
|
||||
Lemma algo_dom_hf_hne n (a b : PTm n) :
|
||||
Lemma algo_dom_hf_hne (a b : PTm) :
|
||||
algo_dom a b ->
|
||||
(ishf a \/ ishne a) /\ (ishf b \/ ishne b).
|
||||
Proof.
|
||||
induction 1 =>//=; hauto lq:on.
|
||||
Qed.
|
||||
|
||||
Lemma hf_no_hred n (a b : PTm n) :
|
||||
Lemma hf_no_hred (a b : PTm) :
|
||||
ishf a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Lemma hne_no_hred n (a b : PTm n) :
|
||||
Lemma hne_no_hred (a b : PTm) :
|
||||
ishne a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Definition fin_beq {n} (i j : fin n) : bool.
|
||||
Proof.
|
||||
induction n.
|
||||
- by exfalso.
|
||||
- refine (match i , j with
|
||||
| None, None => true
|
||||
| Some i, Some j => IHn i j
|
||||
| _, _ => false
|
||||
end).
|
||||
Defined.
|
||||
|
||||
Lemma fin_eq_dec {n} (i j : fin n) :
|
||||
Bool.reflect (i = j) (fin_beq i j).
|
||||
Proof.
|
||||
revert i j. induction n.
|
||||
- destruct i.
|
||||
- destruct i; destruct j.
|
||||
+ specialize (IHn f f0).
|
||||
inversion IHn; subst.
|
||||
simpl. rewrite -H.
|
||||
apply ReflectT.
|
||||
reflexivity.
|
||||
simpl. rewrite -H.
|
||||
apply ReflectF.
|
||||
injection. tauto.
|
||||
+ by apply ReflectF.
|
||||
+ by apply ReflectF.
|
||||
+ by apply ReflectT.
|
||||
Defined.
|
||||
|
||||
Scheme Equality for PTag.
|
||||
Scheme Equality for BTag.
|
||||
|
||||
Derive Signature for algo_dom.
|
||||
(* Fixpoint PTm_eqb {n} (a b : PTm n) := *)
|
||||
(* match a, b with *)
|
||||
(* | VarPTm i, VarPTm j => fin_eq i j *)
|
||||
|
@ -171,7 +181,7 @@ Scheme Equality for BTag.
|
|||
(* destruct IHa1. *)
|
||||
(* destruct a1. *)
|
||||
|
||||
Fixpoint hred {n} (a : PTm n) : option (PTm n) :=
|
||||
Fixpoint hred (a : PTm) : option (PTm) :=
|
||||
match a with
|
||||
| VarPTm i => None
|
||||
| PAbs a => None
|
||||
|
@ -204,31 +214,31 @@ Fixpoint hred {n} (a : PTm n) : option (PTm n) :=
|
|||
end
|
||||
end.
|
||||
|
||||
Lemma hred_complete n (a b : PTm n) :
|
||||
Lemma hred_complete (a b : PTm) :
|
||||
HRed.R a b -> hred a = Some b.
|
||||
Proof.
|
||||
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
|
||||
Qed.
|
||||
|
||||
Lemma hred_sound n (a b : PTm n):
|
||||
Lemma hred_sound (a b : PTm):
|
||||
hred a = Some b -> HRed.R a b.
|
||||
Proof.
|
||||
elim : a b; hauto q:on dep:on ctrs:HRed.R.
|
||||
Qed.
|
||||
|
||||
Lemma hred_deter n (a b0 b1 : PTm n) :
|
||||
Lemma hred_deter (a b0 b1 : PTm) :
|
||||
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
|
||||
Proof.
|
||||
move /hred_complete => + /hred_complete. congruence.
|
||||
Qed.
|
||||
|
||||
Definition hred_fancy n (a : PTm n) :
|
||||
relations.nf HRed.R a + {x | HRed.R a x}.
|
||||
Definition hred_fancy (a : PTm) :
|
||||
HRed.nf a + {x | HRed.R a x}.
|
||||
Proof.
|
||||
destruct (hred a) as [a'|] eqn:eq .
|
||||
- right. exists a'. hauto q:on use:hred_sound.
|
||||
- left.
|
||||
move => [a' h].
|
||||
move => a' h.
|
||||
move /hred_complete in h.
|
||||
congruence.
|
||||
Defined.
|
||||
|
@ -241,6 +251,8 @@ Ltac check_equal_triv :=
|
|||
| _ => idtac
|
||||
end.
|
||||
|
||||
Scheme Equality for nat. Scheme Equality for PTag.
|
||||
Scheme Equality for BTag. Scheme Equality for PTm.
|
||||
(* Program Fixpoint check_equal {n} (a b : PTm n) (h : algo_dom a b) {struct h} : bool := *)
|
||||
(* match a, b with *)
|
||||
(* | VarPTm i, VarPTm j => fin_beq i j *)
|
||||
|
@ -255,9 +267,9 @@ Ltac check_equal_triv :=
|
|||
(* Next Obligation. *)
|
||||
(* simpl. *)
|
||||
|
||||
Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
|
||||
Equations check_equal (a b : PTm) (h : algo_dom a b) :
|
||||
bool by struct h :=
|
||||
check_equal (VarPTm i) (VarPTm j) h := fin_beq i j;
|
||||
check_equal (VarPTm i) (VarPTm j) h := nat_beq i j;
|
||||
check_equal (PAbs a) (PAbs b) h := check_equal_r a b ltac:(check_equal_triv);
|
||||
check_equal (PAbs a) b h := check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) ltac:(check_equal_triv);
|
||||
check_equal a (PAbs b) h := check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b ltac:(check_equal_triv);
|
||||
|
@ -274,26 +286,24 @@ Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
|
|||
check_equal (PSuc a) (PSuc b) h := check_equal_r a b ltac:(check_equal_triv);
|
||||
check_equal (PUniv i) (PUniv j) _ := Nat.eqb i j;
|
||||
check_equal a b h := false;
|
||||
with check_equal_r {n} (a b : PTm n) (h : algo_dom_r a b) :
|
||||
with check_equal_r (a b : PTm) (h : algo_dom_r a b) :
|
||||
bool by struct h :=
|
||||
check_equal_r a b h with hred_fancy _ a =>
|
||||
check_equal_r a b h with hred_fancy a =>
|
||||
{ check_equal_r a b h (inr a') := check_equal_r (proj1_sig a') b _;
|
||||
check_equal_r a b h (inl _) with hred_fancy _ b =>
|
||||
check_equal_r a b h (inl _) with hred_fancy b =>
|
||||
{ check_equal_r a b h (inl _) (inl _) := check_equal a b _;
|
||||
check_equal_r a b h (inl _) (inr b') := check_equal_r a (proj1_sig b') _}} .
|
||||
|
||||
|
||||
Next Obligation.
|
||||
move => /= ih ihr n a nfa b nfb.
|
||||
inversion 1; subst=>//=.
|
||||
inversion h; subst=>//=.
|
||||
exfalso. sfirstorder.
|
||||
exfalso. sfirstorder.
|
||||
Defined.
|
||||
|
||||
Next Obligation.
|
||||
simpl.
|
||||
move => /= ih ihr n a nfa b [b' hb'].
|
||||
inversion 1; subst =>//=.
|
||||
inversion h; subst =>//=.
|
||||
exfalso. hauto lq:on use:algo_dom_hf_hne, hf_no_hred, hne_no_hred.
|
||||
exfalso. sfirstorder.
|
||||
have ? : b' = b'0 by eauto using hred_deter.
|
||||
|
@ -302,8 +312,7 @@ Next Obligation.
|
|||
Defined.
|
||||
|
||||
Next Obligation.
|
||||
simpl => ih ihr n a [a' ha'] b.
|
||||
inversion 1; subst => //=.
|
||||
inversion h; subst => //=.
|
||||
exfalso. hauto lq:on use:algo_dom_hf_hne, hf_no_hred, hne_no_hred.
|
||||
suff ? : a'0 = a' by subst; assumption.
|
||||
by eauto using hred_deter.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue