Seems to work but takes a million years to type check
This commit is contained in:
parent
6c11f5560d
commit
7503dea251
5 changed files with 580 additions and 572 deletions
213
theories/Autosubst2/unscoped.v
Normal file
213
theories/Autosubst2/unscoped.v
Normal file
|
@ -0,0 +1,213 @@
|
|||
(** * Autosubst Header for Unnamed Syntax
|
||||
|
||||
Version: December 11, 2019.
|
||||
*)
|
||||
|
||||
(* Adrian:
|
||||
I changed this library a bit to work better with my generated code.
|
||||
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
|
||||
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
|
||||
Require Import core.
|
||||
Require Import Setoid Morphisms Relation_Definitions.
|
||||
|
||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||
match p with eq_refl => eq_refl end.
|
||||
|
||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||
|
||||
(** ** Primitives of the Sigma Calculus. *)
|
||||
|
||||
Definition shift := S.
|
||||
|
||||
Definition var_zero := 0.
|
||||
|
||||
Definition id {X} := @Datatypes.id X.
|
||||
|
||||
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
|
||||
fun n => match n with
|
||||
| 0 => x
|
||||
| S n => xi n
|
||||
end.
|
||||
|
||||
#[ export ]
|
||||
Hint Opaque scons : rewrite.
|
||||
|
||||
(** ** Type Class Instances for Notation
|
||||
Required to make notation work. *)
|
||||
|
||||
(** *** Type classes for renamings. *)
|
||||
|
||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||
ren1 : X1 -> Y -> Z.
|
||||
|
||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||
ren2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module RenNotations.
|
||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||
|
||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||
|
||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||
End RenNotations.
|
||||
|
||||
(** *** Type Classes for Substiution *)
|
||||
|
||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||
subst1 : X1 -> Y -> Z.
|
||||
|
||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||
subst2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module SubstNotations.
|
||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||
|
||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||
End SubstNotations.
|
||||
|
||||
(** *** Type Class for Variables *)
|
||||
|
||||
Class Var X Y :=
|
||||
ids : X -> Y.
|
||||
|
||||
#[export] Instance idsRen : Var nat nat := id.
|
||||
|
||||
(** ** Proofs for the substitution primitives. *)
|
||||
|
||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||
|
||||
Module CombineNotations.
|
||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||
|
||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||
|
||||
#[ global ]
|
||||
Open Scope fscope.
|
||||
#[ global ]
|
||||
Open Scope subst_scope.
|
||||
End CombineNotations.
|
||||
|
||||
Import CombineNotations.
|
||||
|
||||
|
||||
(** A generic lifting of a renaming. *)
|
||||
Definition up_ren (xi : nat -> nat) :=
|
||||
0 .: (xi >> S).
|
||||
|
||||
(** A generic proof that lifting of renamings composes. *)
|
||||
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||
Proof.
|
||||
intros [|x].
|
||||
- reflexivity.
|
||||
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
|
||||
Qed.
|
||||
|
||||
(** Eta laws. *)
|
||||
Lemma scons_eta' {T} (f : nat -> T) :
|
||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_eta_id' :
|
||||
pointwise_relation _ eq (var_zero .: shift) id.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
|
||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||
#[export] Instance scons_morphism {X: Type} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H.
|
||||
intros [|x].
|
||||
cbn. reflexivity.
|
||||
apply H.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_morphism2 {X: Type} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H ? x ->.
|
||||
destruct x as [|x].
|
||||
cbn. reflexivity.
|
||||
apply H.
|
||||
Qed.
|
||||
|
||||
(** ** Generic lifting of an allfv predicate *)
|
||||
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
|
||||
|
||||
(** ** Notations for unscoped syntax *)
|
||||
Module UnscopedNotations.
|
||||
Include RenNotations.
|
||||
Include SubstNotations.
|
||||
Include CombineNotations.
|
||||
|
||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||
|
||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||
|
||||
Notation "↑" := (shift) : subst_scope.
|
||||
|
||||
#[global]
|
||||
Open Scope fscope.
|
||||
#[global]
|
||||
Open Scope subst_scope.
|
||||
End UnscopedNotations.
|
||||
|
||||
(** ** Tactics for unscoped syntax *)
|
||||
|
||||
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
|
||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||
| [|- forall (i : nat), _] => intros []; t
|
||||
end).
|
||||
|
||||
|
||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||
Ltac fsimpl :=
|
||||
repeat match goal with
|
||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||
| [|- context [id ?s]] => change (id s) with s
|
||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
|
||||
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
|
||||
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
|
||||
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
|
||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||
| [|- context[var_zero]] => change var_zero with 0
|
||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
|
||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
|
||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
|
||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||
end.
|
Loading…
Add table
Add a link
Reference in a new issue