Add unscoped syntax
This commit is contained in:
parent
4509a64bf5
commit
657c1325c9
5 changed files with 532 additions and 541 deletions
4
Makefile
4
Makefile
|
@ -16,12 +16,12 @@ uninstall: $(COQMAKEFILE)
|
||||||
$(MAKE) -f $(COQMAKEFILE) uninstall
|
$(MAKE) -f $(COQMAKEFILE) uninstall
|
||||||
|
|
||||||
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
||||||
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
|
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
|
||||||
|
|
||||||
.PHONY: clean FORCE
|
.PHONY: clean FORCE
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
||||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
|
||||||
|
|
||||||
FORCE:
|
FORCE:
|
||||||
|
|
|
@ -16,7 +16,6 @@ PPair : PTm -> PTm -> PTm
|
||||||
PProj : PTag -> PTm -> PTm
|
PProj : PTag -> PTm -> PTm
|
||||||
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
||||||
PUniv : nat -> PTm
|
PUniv : nat -> PTm
|
||||||
PBot : PTm
|
|
||||||
PNat : PTm
|
PNat : PTm
|
||||||
PZero : PTm
|
PZero : PTm
|
||||||
PSuc : PTm -> PTm
|
PSuc : PTm -> PTm
|
||||||
|
|
File diff suppressed because it is too large
Load diff
213
theories/Autosubst2/unscoped.v
Normal file
213
theories/Autosubst2/unscoped.v
Normal file
|
@ -0,0 +1,213 @@
|
||||||
|
(** * Autosubst Header for Unnamed Syntax
|
||||||
|
|
||||||
|
Version: December 11, 2019.
|
||||||
|
*)
|
||||||
|
|
||||||
|
(* Adrian:
|
||||||
|
I changed this library a bit to work better with my generated code.
|
||||||
|
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
|
||||||
|
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
|
||||||
|
Require Import core.
|
||||||
|
Require Import Setoid Morphisms Relation_Definitions.
|
||||||
|
|
||||||
|
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||||
|
match p with eq_refl => eq_refl end.
|
||||||
|
|
||||||
|
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||||
|
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||||
|
|
||||||
|
(** ** Primitives of the Sigma Calculus. *)
|
||||||
|
|
||||||
|
Definition shift := S.
|
||||||
|
|
||||||
|
Definition var_zero := 0.
|
||||||
|
|
||||||
|
Definition id {X} := @Datatypes.id X.
|
||||||
|
|
||||||
|
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
|
||||||
|
fun n => match n with
|
||||||
|
| 0 => x
|
||||||
|
| S n => xi n
|
||||||
|
end.
|
||||||
|
|
||||||
|
#[ export ]
|
||||||
|
Hint Opaque scons : rewrite.
|
||||||
|
|
||||||
|
(** ** Type Class Instances for Notation
|
||||||
|
Required to make notation work. *)
|
||||||
|
|
||||||
|
(** *** Type classes for renamings. *)
|
||||||
|
|
||||||
|
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||||
|
ren1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||||
|
ren2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||||
|
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||||
|
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||||
|
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module RenNotations.
|
||||||
|
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||||
|
|
||||||
|
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||||
|
End RenNotations.
|
||||||
|
|
||||||
|
(** *** Type Classes for Substiution *)
|
||||||
|
|
||||||
|
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||||
|
subst1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||||
|
subst2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||||
|
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||||
|
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||||
|
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module SubstNotations.
|
||||||
|
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||||
|
End SubstNotations.
|
||||||
|
|
||||||
|
(** *** Type Class for Variables *)
|
||||||
|
|
||||||
|
Class Var X Y :=
|
||||||
|
ids : X -> Y.
|
||||||
|
|
||||||
|
#[export] Instance idsRen : Var nat nat := id.
|
||||||
|
|
||||||
|
(** ** Proofs for the substitution primitives. *)
|
||||||
|
|
||||||
|
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||||
|
|
||||||
|
Module CombineNotations.
|
||||||
|
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||||
|
|
||||||
|
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||||
|
|
||||||
|
#[ global ]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[ global ]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End CombineNotations.
|
||||||
|
|
||||||
|
Import CombineNotations.
|
||||||
|
|
||||||
|
|
||||||
|
(** A generic lifting of a renaming. *)
|
||||||
|
Definition up_ren (xi : nat -> nat) :=
|
||||||
|
0 .: (xi >> S).
|
||||||
|
|
||||||
|
(** A generic proof that lifting of renamings composes. *)
|
||||||
|
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
|
||||||
|
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||||
|
Proof.
|
||||||
|
intros [|x].
|
||||||
|
- reflexivity.
|
||||||
|
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** Eta laws. *)
|
||||||
|
Lemma scons_eta' {T} (f : nat -> T) :
|
||||||
|
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_eta_id' :
|
||||||
|
pointwise_relation _ eq (var_zero .: shift) id.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
|
||||||
|
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||||
|
#[export] Instance scons_morphism {X: Type} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
|
||||||
|
Proof.
|
||||||
|
intros ? t -> sigma tau H.
|
||||||
|
intros [|x].
|
||||||
|
cbn. reflexivity.
|
||||||
|
apply H.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
#[export] Instance scons_morphism2 {X: Type} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
|
||||||
|
Proof.
|
||||||
|
intros ? t -> sigma tau H ? x ->.
|
||||||
|
destruct x as [|x].
|
||||||
|
cbn. reflexivity.
|
||||||
|
apply H.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** ** Generic lifting of an allfv predicate *)
|
||||||
|
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
|
||||||
|
|
||||||
|
(** ** Notations for unscoped syntax *)
|
||||||
|
Module UnscopedNotations.
|
||||||
|
Include RenNotations.
|
||||||
|
Include SubstNotations.
|
||||||
|
Include CombineNotations.
|
||||||
|
|
||||||
|
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||||
|
|
||||||
|
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||||
|
|
||||||
|
Notation "↑" := (shift) : subst_scope.
|
||||||
|
|
||||||
|
#[global]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[global]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End UnscopedNotations.
|
||||||
|
|
||||||
|
(** ** Tactics for unscoped syntax *)
|
||||||
|
|
||||||
|
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
|
||||||
|
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||||
|
| [|- forall (i : nat), _] => intros []; t
|
||||||
|
end).
|
||||||
|
|
||||||
|
|
||||||
|
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||||
|
Ltac fsimpl :=
|
||||||
|
repeat match goal with
|
||||||
|
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||||
|
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||||
|
| [|- context [id ?s]] => change (id s) with s
|
||||||
|
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
|
||||||
|
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
|
||||||
|
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
|
||||||
|
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
|
||||||
|
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||||
|
| [|- context[var_zero]] => change var_zero with 0
|
||||||
|
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
|
||||||
|
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
|
||||||
|
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||||
|
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||||
|
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
|
||||||
|
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||||
|
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||||
|
end.
|
|
@ -1,41 +1,52 @@
|
||||||
Require Import Autosubst2.fintype Autosubst2.syntax Autosubst2.core ssreflect.
|
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect.
|
||||||
From Ltac2 Require Ltac2.
|
From Ltac2 Require Ltac2.
|
||||||
Import Ltac2.Notations.
|
Import Ltac2.Notations.
|
||||||
Import Ltac2.Control.
|
Import Ltac2.Control.
|
||||||
From Hammer Require Import Tactics.
|
From Hammer Require Import Tactics.
|
||||||
|
|
||||||
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) :=
|
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
||||||
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i).
|
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
||||||
|
| there i Γ A B :
|
||||||
|
lookup i Γ A ->
|
||||||
|
lookup (S i) (cons B Γ) (ren_PTm shift A).
|
||||||
|
|
||||||
Lemma up_injective n m (ξ : fin n -> fin m) :
|
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
|
||||||
(forall i j, ξ i = ξ j -> i = j) ->
|
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
|
||||||
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j.
|
|
||||||
|
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
|
||||||
|
|
||||||
|
Lemma up_injective (ξ : nat -> nat) :
|
||||||
|
ren_inj ξ ->
|
||||||
|
ren_inj (upRen_PTm_PTm ξ).
|
||||||
Proof.
|
Proof.
|
||||||
sblast inv:option.
|
move => h i j.
|
||||||
|
case : i => //=; case : j => //=.
|
||||||
|
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Local Ltac2 rec solve_anti_ren () :=
|
Local Ltac2 rec solve_anti_ren () :=
|
||||||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||||||
intro $x;
|
intro $x;
|
||||||
lazy_match! Constr.type (Control.hyp x) with
|
lazy_match! Constr.type (Control.hyp x) with
|
||||||
| fin _ -> _ _ => (ltac1:(case;hauto lq:on rew:off use:up_injective))
|
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
|
||||||
| _ => solve_anti_ren ()
|
| _ => solve_anti_ren ()
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||||||
|
|
||||||
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) :
|
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
|
||||||
(forall i j, ξ i = ξ j -> i = j) ->
|
ren_inj ξ ->
|
||||||
ren_PTm ξ a = ren_PTm ξ b ->
|
ren_PTm ξ a = ren_PTm ξ b ->
|
||||||
a = b.
|
a = b.
|
||||||
Proof.
|
Proof.
|
||||||
move : m ξ b. elim : n / a => //; try solve_anti_ren.
|
move : ξ b. elim : a => //; try solve_anti_ren.
|
||||||
|
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Inductive HF : Set :=
|
Inductive HF : Set :=
|
||||||
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
||||||
|
|
||||||
Definition ishf {n} (a : PTm n) :=
|
Definition ishf (a : PTm) :=
|
||||||
match a with
|
match a with
|
||||||
| PPair _ _ => true
|
| PPair _ _ => true
|
||||||
| PAbs _ => true
|
| PAbs _ => true
|
||||||
|
@ -47,7 +58,7 @@ Definition ishf {n} (a : PTm n) :=
|
||||||
| _ => false
|
| _ => false
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Definition toHF {n} (a : PTm n) :=
|
Definition toHF (a : PTm) :=
|
||||||
match a with
|
match a with
|
||||||
| PPair _ _ => H_Pair
|
| PPair _ _ => H_Pair
|
||||||
| PAbs _ => H_Abs
|
| PAbs _ => H_Abs
|
||||||
|
@ -59,54 +70,53 @@ Definition toHF {n} (a : PTm n) :=
|
||||||
| _ => H_Bot
|
| _ => H_Bot
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Fixpoint ishne {n} (a : PTm n) :=
|
Fixpoint ishne (a : PTm) :=
|
||||||
match a with
|
match a with
|
||||||
| VarPTm _ => true
|
| VarPTm _ => true
|
||||||
| PApp a _ => ishne a
|
| PApp a _ => ishne a
|
||||||
| PProj _ a => ishne a
|
| PProj _ a => ishne a
|
||||||
| PBot => true
|
|
||||||
| PInd _ n _ _ => ishne n
|
| PInd _ n _ _ => ishne n
|
||||||
| _ => false
|
| _ => false
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
|
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
|
||||||
|
|
||||||
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
|
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
|
||||||
|
|
||||||
Definition ispair {n} (a : PTm n) :=
|
Definition ispair (a : PTm) :=
|
||||||
match a with
|
match a with
|
||||||
| PPair _ _ => true
|
| PPair _ _ => true
|
||||||
| _ => false
|
| _ => false
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Definition isnat {n} (a : PTm n) := if a is PNat then true else false.
|
Definition isnat (a : PTm) := if a is PNat then true else false.
|
||||||
|
|
||||||
Definition iszero {n} (a : PTm n) := if a is PZero then true else false.
|
Definition iszero (a : PTm) := if a is PZero then true else false.
|
||||||
|
|
||||||
Definition issuc {n} (a : PTm n) := if a is PSuc _ then true else false.
|
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
|
||||||
|
|
||||||
Definition isabs {n} (a : PTm n) :=
|
Definition isabs (a : PTm) :=
|
||||||
match a with
|
match a with
|
||||||
| PAbs _ => true
|
| PAbs _ => true
|
||||||
| _ => false
|
| _ => false
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
ishf (ren_PTm ξ a) = ishf a.
|
ishf (ren_PTm ξ a) = ishf a.
|
||||||
Proof. case : a => //=. Qed.
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
isabs (ren_PTm ξ a) = isabs a.
|
isabs (ren_PTm ξ a) = isabs a.
|
||||||
Proof. case : a => //=. Qed.
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
ispair (ren_PTm ξ a) = ispair a.
|
ispair (ren_PTm ξ a) = ispair a.
|
||||||
Proof. case : a => //=. Qed.
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
ishne (ren_PTm ξ a) = ishne a.
|
ishne (ren_PTm ξ a) = ishne a.
|
||||||
Proof. move : m ξ. elim : n / a => //=. Qed.
|
Proof. move : ξ. elim : a => //=. Qed.
|
||||||
|
|
||||||
Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A :
|
Lemma renaming_shift Γ (ρ : nat -> PTm) A :
|
||||||
renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift.
|
renaming_ok (cons A Γ) Γ shift.
|
||||||
Proof. sfirstorder. Qed.
|
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue