Finish eta postponement

This commit is contained in:
Yiyun Liu 2025-01-30 23:10:11 -05:00
parent 9134cfec8a
commit 51ac5ffbd6

View file

@ -1151,75 +1151,46 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
move => [d [h0 h1]]. move => [d [h0 h1]].
exists (PApp d b0). exists (PApp d b0).
hauto lq:on ctrs:ERed.R, rtc use:RReds.AppCong. hauto lq:on ctrs:ERed.R, rtc use:RReds.AppCong.
+ move => a2 b0 b1 hb [*]. subst. + move => a2 b2 b3 hb2 [*]. subst.
sauto lq:on. move {iha}.
- move => n a b0 b1 hb ihb Γ c A hu hu'. have : P b0 by sfirstorder use:P_AppInv.
elim /RRed.inv : hu' => //=_. move : ihb hb2; repeat move /[apply].
+ move => A0 a0 b2 [*]. subst. hauto lq:on rew:off ctrs:ERed.R, rtc use:RReds.AppCong.
admit. - move => n a0 a1 b0 b1 ha iha hb ihb c /P_PairInv [hP hP'].
+ sauto lq:on. elim /RRed.inv => //=_;
+ move => a0 b2 b3 hb0 [*]. subst. hauto lq:on rew:off ctrs:ERed.R, rtc use:RReds.PairCong.
have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt. - move => n p a0 a1 ha iha c /[dup] hP /P_ProjInv hP'.
move : ihb hb0. repeat move/[apply].
move => [d [h0 h1]].
exists (PApp a d).
split. admit.
sauto lq:on.
- move => n a0 a1 b ha iha Γ u A hu.
elim / RRed.inv => //= _.
+ move => a2 a3 b0 h [*]. subst.
have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt.
move : iha h. repeat move/[apply].
move => [d [h0 h1]].
exists (PPair d b).
split. admit.
sauto lq:on.
+ move => a2 b0 b1 h [*]. subst.
sauto lq:on.
- move => n a b0 b1 hb ihb Γ c A hu.
elim / RRed.inv => //=_.
move => a0 a1 b2 ha [*]. subst.
+ sauto lq:on.
+ move => a0 b2 b3 hb0 [*]. subst.
have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt.
move : ihb hb0. repeat move/[apply].
move => [d [h0 h1]].
exists (PPair a d).
split. admit.
sauto lq:on.
- move => n p a0 a1 ha iha Γ u A hu.
elim / RRed.inv => //= _. elim / RRed.inv => //= _.
+ move => p0 a2 b0 [*]. subst. + move => p0 a2 b0 [*]. subst.
inversion ha; subst. move : η_split hP' ha; repeat move/[apply].
* exfalso. move => [a1 [h0 h1]].
move : hu. clear. hauto q:on inv:Wt. inversion h1; subst.
* exists (match p with * qauto l:on ctrs:rtc use:RReds.ProjCong, P_ProjAbs, P_RReds.
| PL => a2 * inversion H0; subst.
| PR => b0 exists (if p is PL then a1 else b1).
end). split; last by scongruence use:NeERed.ToERed.
split. apply : rtc_l. apply : relations.rtc_transitive.
apply RReds.ProjCong; eauto.
apply : rtc_l.
apply RRed.ProjCong.
apply RRed.PairCong0.
apply RRed.ProjPair. apply RRed.ProjPair.
apply rtc_once. clear. apply : rtc_l.
hauto lq:on use:RRed.ProjPair. apply RRed.ProjCong.
admit. apply RRed.PairCong1.
* eexists.
split. apply rtc_once.
apply RRed.ProjPair. apply RRed.ProjPair.
admit. apply rtc_once. apply RRed.ProjPair.
* eexists. * exists (if p is PL then a3 else b1).
split. apply rtc_once. split; last by hauto lq:on use:NeERed.ToERed.
apply : relations.rtc_transitive.
eauto using RReds.ProjCong.
apply rtc_once.
apply RRed.ProjPair. apply RRed.ProjPair.
admit. + move => p0 a2 a3 h0 [*]. subst.
+ move => p0 a2 a3 ha0 [*]. subst. move : iha hP' h0;repeat move/[apply].
have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt. hauto lq:on ctrs:rtc, ERed.R use:RReds.ProjCong.
move : iha ha0; repeat move/[apply]. - hauto lq:on inv:RRed.R.
move => [d [h0 h1]]. Qed.
exists (PProj p d).
split.
admit.
sauto lq:on.
Admitted.
End UniqueNF. End UniqueNF.