Finish indzero and indsuc rules
This commit is contained in:
parent
890f97365c
commit
4dd2cd7cd8
2 changed files with 50 additions and 1 deletions
|
@ -42,6 +42,25 @@ Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
|
|||
⊢ Γ ->
|
||||
Γ ⊢ PUniv i : PTm n ∈ PUniv (S i)
|
||||
|
||||
| T_Nat n Γ i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PNat : PTm n ∈ PUniv i
|
||||
|
||||
| T_Zero n Γ :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PZero : PTm n ∈ PNat
|
||||
|
||||
| T_Suc n Γ (a : PTm n) :
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ PSuc a ∈ PNat
|
||||
|
||||
| T_Ind s Γ P (a : PTm s) b c i :
|
||||
funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊢ PInd P a b c ∈ subst_PTm (scons a VarPTm) P
|
||||
|
||||
| T_Conv n Γ (a : PTm n) A B :
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ A ≲ B ->
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue