Finish the soundness and completeness proof of the subtyping algorithm
This commit is contained in:
parent
fe52d78ec5
commit
437c97455e
3 changed files with 179 additions and 10 deletions
|
@ -12,6 +12,11 @@ Proof. induction 1;
|
|||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqeq_neuneu u0 u1 :
|
||||
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||||
Proof.
|
||||
|
@ -165,8 +170,9 @@ Proof.
|
|||
+ sauto lq:on use:hred_deter.
|
||||
Qed.
|
||||
|
||||
Ltac simp_sub := with_strategy opaque [check_equal] simpl.
|
||||
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
|
||||
|
||||
(* Reusing algo_dom results in an inefficient proof, but i'll brute force it so i can get the result more quickly *)
|
||||
Lemma check_sub_sound :
|
||||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h -> if q then a ⋖ b else b ⋖ a) /\
|
||||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h -> if q then a ≪ b else b ≪ a).
|
||||
|
@ -176,14 +182,121 @@ Proof.
|
|||
- move => a0 a1 []//=; hauto qb:on.
|
||||
- simpl. move => i j [];
|
||||
sauto lq:on use:Reflect.Nat_leb_le.
|
||||
- admit.
|
||||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb q.
|
||||
case : p0; case : p1; try done; simp ce_prop.
|
||||
sauto lqb:on.
|
||||
sauto lqb:on.
|
||||
- hauto l:on.
|
||||
- move => i j q h.
|
||||
have {}h : nat_eqdec i j by sfirstorder.
|
||||
case : nat_eqdec h => //=; sauto lq:on.
|
||||
- simp_sub.
|
||||
move => p0 p1 u0 u1 i i0 dom ihdom q.
|
||||
move /andP => [/andP [h00 h01] h1].
|
||||
best use:check_sub_
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- simp_sub.
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- simp_sub.
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- move => a b n n0 i q h.
|
||||
exfalso.
|
||||
destruct a, b; try done; simp_sub; hauto lb:on use:check_equal_conf.
|
||||
- move => a b doma ihdom q.
|
||||
simp ce_prop. sauto lq:on.
|
||||
- move => a a' b hr doma ihdom q.
|
||||
simp ce_prop. move : ihdom => /[apply]. move {doma}.
|
||||
sauto lq:on.
|
||||
- move => a b b' n r dom ihdom q.
|
||||
simp ce_prop.
|
||||
move : ihdom => /[apply].
|
||||
move {dom}.
|
||||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
best b:on use:check_equal_sound.
|
||||
Lemma check_sub_complete :
|
||||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h = false -> if q then ~ a ⋖ b else ~ b ⋖ a) /\
|
||||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h = false -> if q then ~ a ≪ b else ~ b ≪ a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
|
||||
- move => i j q /=.
|
||||
sauto lq:on rew:off use:PeanoNat.Nat.leb_le.
|
||||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb [].
|
||||
+ move => + h. inversion h; subst; simp ce_prop.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* inversion H.
|
||||
+ move => + h. inversion h; subst; simp ce_prop.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* inversion H.
|
||||
- simp_sub.
|
||||
sauto lq:on use:check_equal_complete.
|
||||
- simp_sub.
|
||||
move => p0 p1 u0 u1 i i0 a iha q.
|
||||
move /nandP.
|
||||
case.
|
||||
move /nandP.
|
||||
case => //.
|
||||
by move /negP.
|
||||
by move /negP.
|
||||
move /negP.
|
||||
move => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => u0 u1 a0 a1 i i0 a hdom ihdom hdom' ihdom'.
|
||||
simp_sub.
|
||||
move /nandP.
|
||||
case.
|
||||
move/nandP.
|
||||
case.
|
||||
by move/negP.
|
||||
by move/negP.
|
||||
move /negP.
|
||||
move => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => P0 P1 u0 u1 b0 b1 c0 c1 i i0 dom ihdom dom' ihdom' dom'' ihdom'' dom''' ihdom''' q.
|
||||
move /nandP.
|
||||
case.
|
||||
move /nandP.
|
||||
case => //=.
|
||||
by move/negP.
|
||||
by move/negP.
|
||||
move /negP => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => a b h ih q. simp ce_prop => {}/ih.
|
||||
case : q => h0;
|
||||
inversion 1; subst; hauto l:on use:algo_dom_no_hred, hreds_nf_refl.
|
||||
- move => a a' b r dom ihdom q.
|
||||
simp ce_prop => {}/ihdom.
|
||||
case : q => h0.
|
||||
inversion 1; subst.
|
||||
inversion H0; subst. sfirstorder use:coqleq_no_hred.
|
||||
have ? : a' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
inversion 1; subst.
|
||||
inversion H1; subst. sfirstorder use:coqleq_no_hred.
|
||||
have ? : a' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
- move => a b b' n r hr ih q.
|
||||
simp ce_prop => {}/ih.
|
||||
case : q.
|
||||
+ move => h. inversion 1; subst.
|
||||
inversion H1; subst.
|
||||
sfirstorder use:coqleq_no_hred.
|
||||
have ? : b' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
+ move => h. inversion 1; subst.
|
||||
inversion H0; subst.
|
||||
sfirstorder use:coqleq_no_hred.
|
||||
have ? : b' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue