Update executable to use salgo_dom for subtyping
This commit is contained in:
parent
e278c6eaef
commit
4021d05d99
3 changed files with 128 additions and 233 deletions
|
@ -1051,12 +1051,6 @@ Proof.
|
||||||
exists (S i), a1. hauto lq:on ctrs:nsteps solve+:lia.
|
exists (S i), a1. hauto lq:on ctrs:nsteps solve+:lia.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma hreds_nf_refl a b :
|
|
||||||
HRed.nf a ->
|
|
||||||
rtc HRed.R a b ->
|
|
||||||
a = b.
|
|
||||||
Proof. inversion 2; sfirstorder. Qed.
|
|
||||||
|
|
||||||
Lemma lored_nsteps_app_cong k (a0 a1 b : PTm) :
|
Lemma lored_nsteps_app_cong k (a0 a1 b : PTm) :
|
||||||
nsteps LoRed.R k a0 a1 ->
|
nsteps LoRed.R k a0 a1 ->
|
||||||
ishne a0 ->
|
ishne a0 ->
|
||||||
|
@ -1228,10 +1222,6 @@ Proof.
|
||||||
hauto lq:on rew:off use:ne_nf b:on solve+:lia.
|
hauto lq:on rew:off use:ne_nf b:on solve+:lia.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
|
||||||
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
|
||||||
|
|
||||||
Lemma algo_dom_algo_dom_neu : forall a b, ishne a -> ishne b -> algo_dom a b -> algo_dom_neu a b \/ tm_conf a b.
|
Lemma algo_dom_algo_dom_neu : forall a b, ishne a -> ishne b -> algo_dom a b -> algo_dom_neu a b \/ tm_conf a b.
|
||||||
Proof.
|
Proof.
|
||||||
inversion 3; subst => //=; tauto.
|
inversion 3; subst => //=; tauto.
|
||||||
|
|
|
@ -586,3 +586,12 @@ Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
|
||||||
right. exists p. by apply hred_sound in eq.
|
right. exists p. by apply hred_sound in eq.
|
||||||
left. move => b /hred_complete. congruence.
|
left. move => b /hred_complete. congruence.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
|
Lemma hreds_nf_refl a b :
|
||||||
|
HRed.nf a ->
|
||||||
|
rtc HRed.R a b ->
|
||||||
|
a = b.
|
||||||
|
Proof. inversion 2; sfirstorder. Qed.
|
||||||
|
|
||||||
|
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
||||||
|
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
||||||
|
|
|
@ -11,133 +11,6 @@ Set Default Proof Mode "Classic".
|
||||||
Require Import ssreflect ssrbool.
|
Require Import ssreflect ssrbool.
|
||||||
From Hammer Require Import Tactics.
|
From Hammer Require Import Tactics.
|
||||||
|
|
||||||
Inductive eq_view : PTm -> PTm -> Type :=
|
|
||||||
| V_AbsAbs a b :
|
|
||||||
eq_view (PAbs a) (PAbs b)
|
|
||||||
| V_AbsNeu a b :
|
|
||||||
~~ ishf b ->
|
|
||||||
eq_view (PAbs a) b
|
|
||||||
| V_NeuAbs a b :
|
|
||||||
~~ ishf a ->
|
|
||||||
eq_view a (PAbs b)
|
|
||||||
| V_VarVar i j :
|
|
||||||
eq_view (VarPTm i) (VarPTm j)
|
|
||||||
| V_PairPair a0 b0 a1 b1 :
|
|
||||||
eq_view (PPair a0 b0) (PPair a1 b1)
|
|
||||||
| V_PairNeu a0 b0 u :
|
|
||||||
~~ ishf u ->
|
|
||||||
eq_view (PPair a0 b0) u
|
|
||||||
| V_NeuPair u a1 b1 :
|
|
||||||
~~ ishf u ->
|
|
||||||
eq_view u (PPair a1 b1)
|
|
||||||
| V_ZeroZero :
|
|
||||||
eq_view PZero PZero
|
|
||||||
| V_SucSuc a b :
|
|
||||||
eq_view (PSuc a) (PSuc b)
|
|
||||||
| V_AppApp u0 b0 u1 b1 :
|
|
||||||
eq_view (PApp u0 b0) (PApp u1 b1)
|
|
||||||
| V_ProjProj p0 u0 p1 u1 :
|
|
||||||
eq_view (PProj p0 u0) (PProj p1 u1)
|
|
||||||
| V_IndInd P0 u0 b0 c0 P1 u1 b1 c1 :
|
|
||||||
eq_view (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
|
||||||
| V_NatNat :
|
|
||||||
eq_view PNat PNat
|
|
||||||
| V_BindBind p0 A0 B0 p1 A1 B1 :
|
|
||||||
eq_view (PBind p0 A0 B0) (PBind p1 A1 B1)
|
|
||||||
| V_UnivUniv i j :
|
|
||||||
eq_view (PUniv i) (PUniv j)
|
|
||||||
| V_Others a b :
|
|
||||||
tm_conf a b ->
|
|
||||||
eq_view a b.
|
|
||||||
|
|
||||||
Equations tm_to_eq_view (a b : PTm) : eq_view a b :=
|
|
||||||
tm_to_eq_view (PAbs a) (PAbs b) := V_AbsAbs a b;
|
|
||||||
tm_to_eq_view (PAbs a) (PApp b0 b1) := V_AbsNeu a (PApp b0 b1) _;
|
|
||||||
tm_to_eq_view (PAbs a) (VarPTm i) := V_AbsNeu a (VarPTm i) _;
|
|
||||||
tm_to_eq_view (PAbs a) (PProj p b) := V_AbsNeu a (PProj p b) _;
|
|
||||||
tm_to_eq_view (PAbs a) (PInd P u b c) := V_AbsNeu a (PInd P u b c) _;
|
|
||||||
tm_to_eq_view (VarPTm i) (PAbs a) := V_NeuAbs (VarPTm i) a _;
|
|
||||||
tm_to_eq_view (PApp b0 b1) (PAbs b) := V_NeuAbs (PApp b0 b1) b _;
|
|
||||||
tm_to_eq_view (PProj p b) (PAbs a) := V_NeuAbs (PProj p b) a _;
|
|
||||||
tm_to_eq_view (PInd P u b c) (PAbs a) := V_NeuAbs (PInd P u b c) a _;
|
|
||||||
tm_to_eq_view (VarPTm i) (VarPTm j) := V_VarVar i j;
|
|
||||||
tm_to_eq_view (PPair a0 b0) (PPair a1 b1) := V_PairPair a0 b0 a1 b1;
|
|
||||||
(* tm_to_eq_view (PPair a0 b0) u := V_PairNeu a0 b0 u _; *)
|
|
||||||
tm_to_eq_view (PPair a0 b0) (VarPTm i) := V_PairNeu a0 b0 (VarPTm i) _;
|
|
||||||
tm_to_eq_view (PPair a0 b0) (PApp c0 c1) := V_PairNeu a0 b0 (PApp c0 c1) _;
|
|
||||||
tm_to_eq_view (PPair a0 b0) (PProj p c) := V_PairNeu a0 b0 (PProj p c) _;
|
|
||||||
tm_to_eq_view (PPair a0 b0) (PInd P t0 t1 t2) := V_PairNeu a0 b0 (PInd P t0 t1 t2) _;
|
|
||||||
(* tm_to_eq_view u (PPair a1 b1) := V_NeuPair u a1 b1 _; *)
|
|
||||||
tm_to_eq_view (VarPTm i) (PPair a1 b1) := V_NeuPair (VarPTm i) a1 b1 _;
|
|
||||||
tm_to_eq_view (PApp t0 t1) (PPair a1 b1) := V_NeuPair (PApp t0 t1) a1 b1 _;
|
|
||||||
tm_to_eq_view (PProj t0 t1) (PPair a1 b1) := V_NeuPair (PProj t0 t1) a1 b1 _;
|
|
||||||
tm_to_eq_view (PInd t0 t1 t2 t3) (PPair a1 b1) := V_NeuPair (PInd t0 t1 t2 t3) a1 b1 _;
|
|
||||||
tm_to_eq_view PZero PZero := V_ZeroZero;
|
|
||||||
tm_to_eq_view (PSuc a) (PSuc b) := V_SucSuc a b;
|
|
||||||
tm_to_eq_view (PApp a0 b0) (PApp a1 b1) := V_AppApp a0 b0 a1 b1;
|
|
||||||
tm_to_eq_view (PProj p0 b0) (PProj p1 b1) := V_ProjProj p0 b0 p1 b1;
|
|
||||||
tm_to_eq_view (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1) := V_IndInd P0 u0 b0 c0 P1 u1 b1 c1;
|
|
||||||
tm_to_eq_view PNat PNat := V_NatNat;
|
|
||||||
tm_to_eq_view (PUniv i) (PUniv j) := V_UnivUniv i j;
|
|
||||||
tm_to_eq_view (PBind p0 A0 B0) (PBind p1 A1 B1) := V_BindBind p0 A0 B0 p1 A1 B1;
|
|
||||||
tm_to_eq_view a b := V_Others a b _.
|
|
||||||
|
|
||||||
|
|
||||||
(* Inductive salgo_dom : PTm -> PTm -> Prop := *)
|
|
||||||
(* | S_UnivCong i j : *)
|
|
||||||
(* (* -------------------------- *) *)
|
|
||||||
(* salgo_dom (PUniv i) (PUniv j) *)
|
|
||||||
|
|
||||||
(* | S_PiCong A0 A1 B0 B1 : *)
|
|
||||||
(* salgo_dom_r A1 A0 -> *)
|
|
||||||
(* salgo_dom_r B0 B1 -> *)
|
|
||||||
(* (* ---------------------------- *) *)
|
|
||||||
(* salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1) *)
|
|
||||||
|
|
||||||
(* | S_SigCong A0 A1 B0 B1 : *)
|
|
||||||
(* salgo_dom_r A0 A1 -> *)
|
|
||||||
(* salgo_dom_r B0 B1 -> *)
|
|
||||||
(* (* ---------------------------- *) *)
|
|
||||||
(* salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1) *)
|
|
||||||
|
|
||||||
(* | S_NatCong : *)
|
|
||||||
(* salgo_dom PNat PNat *)
|
|
||||||
|
|
||||||
(* | S_NeuNeu a b : *)
|
|
||||||
(* ishne a -> *)
|
|
||||||
(* ishne b -> *)
|
|
||||||
(* algo_dom a b -> *)
|
|
||||||
(* (* ------------------- *) *)
|
|
||||||
(* salgo_dom *)
|
|
||||||
|
|
||||||
(* | S_Conf a b : *)
|
|
||||||
(* HRed.nf a -> *)
|
|
||||||
(* HRed.nf b -> *)
|
|
||||||
(* tm_conf a b -> *)
|
|
||||||
(* salgo_dom a b *)
|
|
||||||
|
|
||||||
(* with salgo_dom_r : PTm -> PTm -> Prop := *)
|
|
||||||
(* | S_NfNf a b : *)
|
|
||||||
(* salgo_dom a b -> *)
|
|
||||||
(* salgo_dom_r a b *)
|
|
||||||
|
|
||||||
(* | S_HRedL a a' b : *)
|
|
||||||
(* HRed.R a a' -> *)
|
|
||||||
(* salgo_dom_r a' b -> *)
|
|
||||||
(* (* ----------------------- *) *)
|
|
||||||
(* salgo_dom_r a b *)
|
|
||||||
|
|
||||||
(* | S_HRedR a b b' : *)
|
|
||||||
(* HRed.nf a -> *)
|
|
||||||
(* HRed.R b b' -> *)
|
|
||||||
(* salgo_dom_r a b' -> *)
|
|
||||||
(* (* ----------------------- *) *)
|
|
||||||
(* salgo_dom_r a b. *)
|
|
||||||
|
|
||||||
(* Scheme salgo_ind := Induction for salgo_dom Sort Prop *)
|
|
||||||
(* with algor_ind := Induction for salgo_dom_r Sort Prop. *)
|
|
||||||
|
|
||||||
|
|
||||||
Ltac2 destruct_algo () :=
|
Ltac2 destruct_algo () :=
|
||||||
lazy_match! goal with
|
lazy_match! goal with
|
||||||
| [h : algo_dom ?a ?b |- _ ] =>
|
| [h : algo_dom ?a ?b |- _ ] =>
|
||||||
|
@ -161,70 +34,79 @@ Ltac solve_check_equal :=
|
||||||
| _ => idtac
|
| _ => idtac
|
||||||
end].
|
end].
|
||||||
|
|
||||||
#[derive(equations=no)]Equations check_equal (a b : PTm) (h : algo_dom a b) :
|
Global Set Transparent Obligations.
|
||||||
bool by struct h :=
|
|
||||||
check_equal a b h with tm_to_eq_view a b :=
|
|
||||||
check_equal _ _ h (V_VarVar i j) := nat_eqdec i j;
|
|
||||||
check_equal _ _ h (V_AbsAbs a b) := check_equal_r a b ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_AbsNeu a b h') := check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_NeuAbs a b _) := check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_PairPair a0 b0 a1 b1) :=
|
|
||||||
check_equal_r a0 a1 ltac:(check_equal_triv) && check_equal_r b0 b1 ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_PairNeu a0 b0 u _) :=
|
|
||||||
check_equal_r a0 (PProj PL u) ltac:(check_equal_triv) && check_equal_r b0 (PProj PR u) ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_NeuPair u a1 b1 _) :=
|
|
||||||
check_equal_r (PProj PL u) a1 ltac:(check_equal_triv) && check_equal_r (PProj PR u) b1 ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h V_NatNat := true;
|
|
||||||
check_equal _ _ h V_ZeroZero := true;
|
|
||||||
check_equal _ _ h (V_SucSuc a b) := check_equal_r a b ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_ProjProj p0 a p1 b) :=
|
|
||||||
PTag_eqdec p0 p1 && check_equal a b ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_AppApp a0 b0 a1 b1) :=
|
|
||||||
check_equal a0 a1 ltac:(check_equal_triv) && check_equal_r b0 b1 ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_IndInd P0 u0 b0 c0 P1 u1 b1 c1) :=
|
|
||||||
check_equal_r P0 P1 ltac:(check_equal_triv) &&
|
|
||||||
check_equal u0 u1 ltac:(check_equal_triv) &&
|
|
||||||
check_equal_r b0 b1 ltac:(check_equal_triv) &&
|
|
||||||
check_equal_r c0 c1 ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ h (V_UnivUniv i j) := nat_eqdec i j;
|
|
||||||
check_equal _ _ h (V_BindBind p0 A0 B0 p1 A1 B1) :=
|
|
||||||
BTag_eqdec p0 p1 && check_equal_r A0 A1 ltac:(check_equal_triv) && check_equal_r B0 B1 ltac:(check_equal_triv);
|
|
||||||
check_equal _ _ _ _ := false
|
|
||||||
|
|
||||||
(* check_equal a b h := false; *)
|
Local Obligation Tactic := try solve [check_equal_triv | sfirstorder].
|
||||||
with check_equal_r (a b : PTm) (h0 : algo_dom_r a b) :
|
|
||||||
bool by struct h0 :=
|
Program Fixpoint check_equal (a b : PTm) (h : algo_dom a b) {struct h} : bool :=
|
||||||
check_equal_r a b h with (fancy_hred a) :=
|
match a, b with
|
||||||
check_equal_r a b h (inr a') := check_equal_r (proj1_sig a') b _;
|
| VarPTm i, VarPTm j => nat_eqdec i j
|
||||||
check_equal_r a b h (inl h') with (fancy_hred b) :=
|
| PAbs a, PAbs b => check_equal_r a b _
|
||||||
| inr b' := check_equal_r a (proj1_sig b') _;
|
| PAbs a, VarPTm _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
| inl h'' := check_equal a b _.
|
| PAbs a, PApp _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| PAbs a, PInd _ _ _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| PAbs a, PProj _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| VarPTm _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PApp _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PProj _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PInd _ _ _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PPair a0 b0, PPair a1 b1 =>
|
||||||
|
check_equal_r a0 a1 _ && check_equal_r b0 b1 _
|
||||||
|
| PPair a0 b0, VarPTm _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PProj _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PApp _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PInd _ _ _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| VarPTm _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PApp _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PProj _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PInd _ _ _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PNat, PNat => true
|
||||||
|
| PZero, PZero => true
|
||||||
|
| PSuc a, PSuc b => check_equal_r a b _
|
||||||
|
| PProj p0 a, PProj p1 b => PTag_eqdec p0 p1 && check_equal a b _
|
||||||
|
| PApp a0 b0, PApp a1 b1 => check_equal a0 a1 _ && check_equal_r b0 b1 _
|
||||||
|
| PInd P0 u0 b0 c0, PInd P1 u1 b1 c1 =>
|
||||||
|
check_equal_r P0 P1 _ && check_equal u0 u1 _ && check_equal_r b0 b1 _ && check_equal_r c0 c1 _
|
||||||
|
| PUniv i, PUniv j => nat_eqdec i j
|
||||||
|
| PBind p0 A0 B0, PBind p1 A1 B1 => BTag_eqdec p0 p1 && check_equal_r A0 A1 _ && check_equal_r B0 B1 _
|
||||||
|
| _, _ => false
|
||||||
|
end
|
||||||
|
with check_equal_r (a b : PTm) (h : algo_dom_r a b) {struct h} : bool :=
|
||||||
|
match fancy_hred a with
|
||||||
|
| inr a' => check_equal_r (proj1_sig a') b _
|
||||||
|
| inl ha' => match fancy_hred b with
|
||||||
|
| inr b' => check_equal_r a (proj1_sig b') _
|
||||||
|
| inl hb' => check_equal a b _
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
Next Obligation.
|
Next Obligation.
|
||||||
intros.
|
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||||
inversion h; subst => //=.
|
inversion h; subst => //=.
|
||||||
exfalso. hauto l:on use:hred_complete unfold:HRed.nf.
|
|
||||||
exfalso. hauto l:on use:hred_complete unfold:HRed.nf.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
Next Obligation.
|
|
||||||
intros.
|
|
||||||
destruct h.
|
|
||||||
exfalso. sfirstorder use: algo_dom_no_hred.
|
|
||||||
exfalso. sfirstorder.
|
|
||||||
assert ( b' = b'0)by eauto using hred_deter. subst.
|
|
||||||
apply h.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
Next Obligation.
|
|
||||||
simpl. intros.
|
|
||||||
inversion h; subst =>//=.
|
|
||||||
exfalso. sfirstorder use:algo_dom_no_hred.
|
exfalso. sfirstorder use:algo_dom_no_hred.
|
||||||
move {h}.
|
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||||
assert (a' = a'0) by eauto using hred_deter, hred_sound. by subst.
|
exfalso. sfirstorder.
|
||||||
exfalso. sfirstorder use:hne_no_hred, hf_no_hred.
|
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
|
Next Obligation.
|
||||||
|
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||||
|
destruct b' as [b' hb']. simpl.
|
||||||
|
inversion h; subst.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder use:algo_dom_no_hred.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder.
|
||||||
|
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||||
|
Next Obligation.
|
||||||
|
move => /= a b hdom ha _ hb _.
|
||||||
|
inversion hdom; subst.
|
||||||
|
- assumption.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
Defined.
|
||||||
|
|
||||||
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
|
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
|
||||||
Proof. reflexivity. Qed.
|
Proof. reflexivity. Qed.
|
||||||
|
@ -279,14 +161,14 @@ Proof.
|
||||||
sfirstorder use:hred_complete, hred_sound.
|
sfirstorder use:hred_complete, hred_sound.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Ltac simp_check_r := with_strategy opaque [check_equal] simpl in *.
|
||||||
|
|
||||||
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
|
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
|
||||||
Proof.
|
Proof.
|
||||||
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
||||||
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||||
simpl.
|
simp_check_r.
|
||||||
rewrite /check_equal_r_functional.
|
|
||||||
destruct (fancy_hred a).
|
destruct (fancy_hred a).
|
||||||
simpl.
|
|
||||||
destruct (fancy_hred b).
|
destruct (fancy_hred b).
|
||||||
reflexivity.
|
reflexivity.
|
||||||
exfalso. hauto l:on use:hred_complete.
|
exfalso. hauto l:on use:hred_complete.
|
||||||
|
@ -297,11 +179,9 @@ Lemma check_equal_hredl a b a' ha doma :
|
||||||
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
|
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
|
||||||
Proof.
|
Proof.
|
||||||
simpl.
|
simpl.
|
||||||
rewrite /check_equal_r_functional.
|
|
||||||
destruct (fancy_hred a).
|
destruct (fancy_hred a).
|
||||||
- hauto q:on unfold:HRed.nf.
|
- hauto q:on unfold:HRed.nf.
|
||||||
- destruct s as [x ?].
|
- destruct s as [x ?].
|
||||||
rewrite /check_equal_r_functional.
|
|
||||||
have ? : x = a' by eauto using hred_deter. subst.
|
have ? : x = a' by eauto using hred_deter. subst.
|
||||||
simpl.
|
simpl.
|
||||||
f_equal.
|
f_equal.
|
||||||
|
@ -312,7 +192,7 @@ Lemma check_equal_hredr a b b' hu r a0 :
|
||||||
check_equal_r a b (A_HRedR a b b' hu r a0) =
|
check_equal_r a b (A_HRedR a b b' hu r a0) =
|
||||||
check_equal_r a b' a0.
|
check_equal_r a b' a0.
|
||||||
Proof.
|
Proof.
|
||||||
simpl. rewrite /check_equal_r_functional.
|
simpl.
|
||||||
destruct (fancy_hred a).
|
destruct (fancy_hred a).
|
||||||
- simpl.
|
- simpl.
|
||||||
destruct (fancy_hred b) as [|[b'' hb']].
|
destruct (fancy_hred b) as [|[b'' hb']].
|
||||||
|
@ -335,31 +215,51 @@ Proof. destruct a; destruct b => //=. Qed.
|
||||||
|
|
||||||
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
||||||
|
|
||||||
Obligation Tactic := try solve [check_equal_triv | sfirstorder].
|
Ltac2 destruct_salgo () :=
|
||||||
|
lazy_match! goal with
|
||||||
|
| [h : salgo_dom ?a ?b |- _ ] =>
|
||||||
|
if is_var a then destruct $a; ltac1:(done) else
|
||||||
|
(if is_var b then destruct $b; ltac1:(done) else ())
|
||||||
|
end.
|
||||||
|
|
||||||
Program Fixpoint check_sub (q : bool) (a b : PTm) (h : algo_dom a b) {struct h} :=
|
Ltac check_sub_triv :=
|
||||||
|
intros;subst;
|
||||||
|
lazymatch goal with
|
||||||
|
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
|
||||||
|
| [h : salgo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
|
||||||
|
| _ => idtac
|
||||||
|
end.
|
||||||
|
|
||||||
|
Local Obligation Tactic := try solve [check_sub_triv | sfirstorder].
|
||||||
|
|
||||||
|
Program Fixpoint check_sub (a b : PTm) (h : salgo_dom a b) {struct h} :=
|
||||||
match a, b with
|
match a, b with
|
||||||
| PBind PPi A0 B0, PBind PPi A1 B1 =>
|
| PBind PPi A0 B0, PBind PPi A1 B1 =>
|
||||||
check_sub_r (negb q) A0 A1 _ && check_sub_r q B0 B1 _
|
check_sub_r A1 A0 _ && check_sub_r B0 B1 _
|
||||||
| PBind PSig A0 B0, PBind PSig A1 B1 =>
|
| PBind PSig A0 B0, PBind PSig A1 B1 =>
|
||||||
check_sub_r q A0 A1 _ && check_sub_r q B0 B1 _
|
check_sub_r A0 A1 _ && check_sub_r B0 B1 _
|
||||||
| PUniv i, PUniv j =>
|
| PUniv i, PUniv j =>
|
||||||
if q then PeanoNat.Nat.leb i j else PeanoNat.Nat.leb j i
|
PeanoNat.Nat.leb i j
|
||||||
| PNat, PNat => true
|
| PNat, PNat => true
|
||||||
| _ ,_ => ishne a && ishne b && check_equal a b h
|
| PApp _ _ , PApp _ _ => check_equal a b _
|
||||||
|
| VarPTm _, VarPTm _ => check_equal a b _
|
||||||
|
| PInd _ _ _ _, PInd _ _ _ _ => check_equal a b _
|
||||||
|
| PProj _ _, PProj _ _ => check_equal a b _
|
||||||
|
| _, _ => false
|
||||||
end
|
end
|
||||||
with check_sub_r (q : bool) (a b : PTm) (h : algo_dom_r a b) {struct h} :=
|
with check_sub_r (a b : PTm) (h : salgo_dom_r a b) {struct h} :=
|
||||||
match fancy_hred a with
|
match fancy_hred a with
|
||||||
| inr a' => check_sub_r q (proj1_sig a') b _
|
| inr a' => check_sub_r (proj1_sig a') b _
|
||||||
| inl ha' => match fancy_hred b with
|
| inl ha' => match fancy_hred b with
|
||||||
| inr b' => check_sub_r q a (proj1_sig b') _
|
| inr b' => check_sub_r a (proj1_sig b') _
|
||||||
| inl hb' => check_sub q a b _
|
| inl hb' => check_sub a b _
|
||||||
end
|
end
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Next Obligation.
|
Next Obligation.
|
||||||
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||||
inversion h; subst => //=.
|
inversion h; subst => //=.
|
||||||
exfalso. sfirstorder use:algo_dom_no_hred.
|
exfalso. sfirstorder use:salgo_dom_no_hred.
|
||||||
assert (a' = a'0) by eauto using hred_deter. by subst.
|
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||||
exfalso. sfirstorder.
|
exfalso. sfirstorder.
|
||||||
Defined.
|
Defined.
|
||||||
|
@ -369,7 +269,7 @@ Next Obligation.
|
||||||
destruct b' as [b' hb']. simpl.
|
destruct b' as [b' hb']. simpl.
|
||||||
inversion h; subst.
|
inversion h; subst.
|
||||||
- exfalso.
|
- exfalso.
|
||||||
sfirstorder use:algo_dom_no_hred.
|
sfirstorder use:salgo_dom_no_hred.
|
||||||
- exfalso.
|
- exfalso.
|
||||||
sfirstorder.
|
sfirstorder.
|
||||||
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||||
|
@ -377,34 +277,30 @@ Defined.
|
||||||
|
|
||||||
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||||
Next Obligation.
|
Next Obligation.
|
||||||
move => _ /= a b hdom ha _ hb _.
|
move => /= a b hdom ha _ hb _.
|
||||||
inversion hdom; subst.
|
inversion hdom; subst.
|
||||||
- assumption.
|
- assumption.
|
||||||
- exfalso; sfirstorder.
|
- exfalso; sfirstorder.
|
||||||
- exfalso; sfirstorder.
|
- exfalso; sfirstorder.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
Lemma check_sub_pi_pi q A0 B0 A1 B1 h0 h1 :
|
Lemma check_sub_pi_pi A0 B0 A1 B1 h0 h1 :
|
||||||
check_sub q (PBind PPi A0 B0) (PBind PPi A1 B1) (A_BindCong PPi PPi A0 A1 B0 B1 h0 h1) =
|
check_sub (PBind PPi A0 B0) (PBind PPi A1 B1) (S_PiCong A0 A1 B0 B1 h0 h1) =
|
||||||
check_sub_r (~~ q) A0 A1 h0 && check_sub_r q B0 B1 h1.
|
check_sub_r A1 A0 h0 && check_sub_r B0 B1 h1.
|
||||||
Proof. reflexivity. Qed.
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
Lemma check_sub_sig_sig q A0 B0 A1 B1 h0 h1 :
|
Lemma check_sub_sig_sig A0 B0 A1 B1 h0 h1 :
|
||||||
check_sub q (PBind PSig A0 B0) (PBind PSig A1 B1) (A_BindCong PSig PSig A0 A1 B0 B1 h0 h1) =
|
check_sub (PBind PSig A0 B0) (PBind PSig A1 B1) (S_SigCong A0 A1 B0 B1 h0 h1) =
|
||||||
check_sub_r q A0 A1 h0 && check_sub_r q B0 B1 h1.
|
check_sub_r A0 A1 h0 && check_sub_r B0 B1 h1.
|
||||||
reflexivity. Qed.
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
Lemma check_sub_univ_univ i j :
|
Lemma check_sub_univ_univ i j :
|
||||||
check_sub true (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb i j.
|
check_sub (PUniv i) (PUniv j) (S_UnivCong i j) = PeanoNat.Nat.leb i j.
|
||||||
Proof. reflexivity. Qed.
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
Lemma check_sub_univ_univ' i j :
|
Lemma check_sub_nfnf a b dom : check_sub_r a b (S_NfNf a b dom) = check_sub a b dom.
|
||||||
check_sub false (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb j i.
|
|
||||||
reflexivity. Qed.
|
|
||||||
|
|
||||||
Lemma check_sub_nfnf q a b dom : check_sub_r q a b (A_NfNf a b dom) = check_sub q a b dom.
|
|
||||||
Proof.
|
Proof.
|
||||||
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
|
||||||
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||||
simpl.
|
simpl.
|
||||||
destruct (fancy_hred b)=>//=.
|
destruct (fancy_hred b)=>//=.
|
||||||
|
@ -415,8 +311,8 @@ Proof.
|
||||||
hauto l:on use:hred_complete.
|
hauto l:on use:hred_complete.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma check_sub_hredl q a b a' ha doma :
|
Lemma check_sub_hredl a b a' ha doma :
|
||||||
check_sub_r q a b (A_HRedL a a' b ha doma) = check_sub_r q a' b doma.
|
check_sub_r a b (S_HRedL a a' b ha doma) = check_sub_r a' b doma.
|
||||||
Proof.
|
Proof.
|
||||||
simpl.
|
simpl.
|
||||||
destruct (fancy_hred a).
|
destruct (fancy_hred a).
|
||||||
|
@ -428,9 +324,9 @@ Proof.
|
||||||
apply PropExtensionality.proof_irrelevance.
|
apply PropExtensionality.proof_irrelevance.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma check_sub_hredr q a b b' hu r a0 :
|
Lemma check_sub_hredr a b b' hu r a0 :
|
||||||
check_sub_r q a b (A_HRedR a b b' hu r a0) =
|
check_sub_r a b (S_HRedR a b b' hu r a0) =
|
||||||
check_sub_r q a b' a0.
|
check_sub_r a b' a0.
|
||||||
Proof.
|
Proof.
|
||||||
simpl.
|
simpl.
|
||||||
destruct (fancy_hred a).
|
destruct (fancy_hred a).
|
||||||
|
@ -445,4 +341,4 @@ Proof.
|
||||||
sfirstorder use:hne_no_hred, hf_no_hred.
|
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
#[export]Hint Rewrite check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ' check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.
|
#[export]Hint Rewrite check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue