Work on the refactoring proof
This commit is contained in:
parent
fe418c2a78
commit
3e8ad2c5bc
3 changed files with 127 additions and 145 deletions
|
@ -3,13 +3,13 @@ Require Import fp_red logrel typing.
|
|||
From Hammer Require Import Tactics.
|
||||
|
||||
Theorem fundamental_theorem :
|
||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> ⊨ Γ) /\
|
||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||
(forall n Γ (a b : PTm n), Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||
(forall Γ, ⊢ Γ -> ⊨ Γ) /\
|
||||
(forall Γ a A, Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||
(forall Γ a b A, Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||
(forall Γ a b, Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||
apply wt_mutual; eauto with sem; [hauto l:on use:SE_Pair].
|
||||
Unshelve. all : exact 0.
|
||||
Qed.
|
||||
|
||||
Lemma synsub_to_usub : forall n Γ (a b : PTm n), Γ ⊢ a ≲ b -> SN a /\ SN b /\ Sub.R a b.
|
||||
Lemma synsub_to_usub : forall Γ (a b : PTm), Γ ⊢ a ≲ b -> SN a /\ SN b /\ Sub.R a b.
|
||||
Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue