Add E_AppEta

This commit is contained in:
Yiyun Liu 2025-04-18 16:38:34 -04:00
parent 43daff1b27
commit 2b92845e3e
3 changed files with 114 additions and 61 deletions

View file

@ -16,6 +16,70 @@ Proof.
hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs. hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
Qed. Qed.
Lemma App_Inv Γ (b a : PTm) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : Γ u U / hu => //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv Γ (a : PTm) U :
Γ PAbs a U ->
exists A B, (cons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : Γ u U / hu => //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A.
Proof.
move => a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h.
apply : E_Conv; eauto.
apply : E_AppAbs; eauto.
eauto using T_Conv.
Qed.
Lemma T_Eta Γ A a B :
A :: Γ a B ->
A :: Γ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) B.
Proof.
move => ha.
have hΓ' : A :: Γ by sfirstorder use:wff_mutual.
have [i hA] : exists i, Γ A PUniv i by hauto lq:on inv:Wff.
have : Γ by hauto lq:on inv:Wff.
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
econstructor; eauto. sauto l:on use:renaming.
apply T_Var => //.
by constructor.
Qed.
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 : Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 A1 PUniv i -> Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i -> (cons A0 Γ) B0 B1 PUniv i ->
@ -46,3 +110,51 @@ Proof.
have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity. have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity.
move : E_Proj2 h; by repeat move/[apply]. move : E_Proj2 h; by repeat move/[apply].
Qed. Qed.
Lemma E_FunExt Γ (a b : PTm) A B :
Γ a PBind PPi A B ->
Γ b PBind PPi A B ->
A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B.
Proof.
hauto l:on use:regularity, E_FunExt.
Qed.
Lemma E_AppEta Γ (b : PTm) A B :
Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B.
Proof.
move => h.
have [i hPi] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
have [j [hA hB]] : exists i, Γ A PUniv i /\ A :: Γ B PUniv i by hauto lq:on use:Bind_Inv.
have {i} {}hPi : Γ PBind PPi A B PUniv j by sfirstorder use:T_Bind, wff_mutual.
have : A :: Γ by hauto lq:on use:Bind_Inv, Wff_Cons'.
have hΓ' : ren_PTm shift A :: A :: Γ by sauto lq:on use:renaming, renaming_shift inv:Wff.
apply E_FunExt; eauto.
apply T_Abs.
eapply T_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
change (PBind _ _ _) with (ren_PTm shift (PBind PPi A B)).
eapply renaming; eauto.
apply renaming_shift.
constructor => //.
by constructor.
apply : E_Transitive. simpl.
apply E_AppAbs' with (i := j)(A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B); eauto.
by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
constructor => //.
by constructor.
asimpl.
eapply T_App' with (A := ren_PTm shift (ren_PTm shift A)) (B := ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B)); cycle 2.
constructor. econstructor; eauto. sauto lq:on use:renaming, renaming_shift.
by constructor. asimpl. substify. by asimpl.
have -> : PBind PPi (ren_PTm shift (ren_PTm shift A)) (ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B))= (ren_PTm (funcomp shift shift) (PBind PPi A B)) by asimpl.
eapply renaming; eauto. admit.
asimpl. renamify.
eapply E_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
sauto lq:on use:renaming, renaming_shift, E_Refl.
constructor. constructor=>//. constructor.
Admitted.

View file

@ -586,7 +586,8 @@ Proof.
have [h2 h3] : Γ A2 A0 /\ Γ A2 A1 by hauto l:on use:Su_Pi_Proj1. have [h2 h3] : Γ A2 A0 /\ Γ A2 A1 by hauto l:on use:Su_Pi_Proj1.
apply E_Conv with (A := PBind PPi A2 B2); cycle 1. apply E_Conv with (A := PBind PPi A2 B2); cycle 1.
eauto using E_Symmetric, Su_Eq. eauto using E_Symmetric, Su_Eq.
apply : E_Abs; eauto. hauto l:on use:regularity. apply : E_Abs; eauto.
apply iha. apply iha.
move /Su_Pi_Proj2_Var in hp0. move /Su_Pi_Proj2_Var in hp0.
apply : T_Conv; eauto. apply : T_Conv; eauto.

View file

@ -4,32 +4,6 @@ Require Import ssreflect.
Require Import Psatz. Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality. Require Import Coq.Logic.FunctionalExtensionality.
Lemma App_Inv Γ (b a : PTm) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : Γ u U / hu => //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv Γ (a : PTm) U :
Γ PAbs a U ->
exists A B, (cons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : Γ u U / hu => //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj1_Inv Γ (a : PTm ) U : Lemma Proj1_Inv Γ (a : PTm ) U :
Γ PProj PL a U -> Γ PProj PL a U ->
exists A B, Γ a PBind PSig A B /\ Γ A U. exists A B, Γ a PBind PSig A B /\ Γ A U.
@ -93,40 +67,6 @@ Proof.
- hauto lq:on rew:off ctrs:LEq. - hauto lq:on rew:off ctrs:LEq.
Qed. Qed.
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A.
Proof.
move => a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h.
apply : E_Conv; eauto.
apply : E_AppAbs; eauto.
eauto using T_Conv.
Qed.
Lemma T_Eta Γ A a B :
A :: Γ a B ->
A :: Γ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) B.
Proof.
move => ha.
have hΓ' : A :: Γ by sfirstorder use:wff_mutual.
have [i hA] : exists i, Γ A PUniv i by hauto lq:on inv:Wff.
have : Γ by hauto lq:on inv:Wff.
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
econstructor; eauto. sauto l:on use:renaming.
apply T_Var => //.
by constructor.
Qed.
Lemma E_Abs Γ a b A B : Lemma E_Abs Γ a b A B :
A :: Γ a b B -> A :: Γ a b B ->
Γ PAbs a PAbs b PBind PPi A B. Γ PAbs a PAbs b PBind PPi A B.