Add some admits to work on later
This commit is contained in:
parent
b2aec9c6ce
commit
291d821d94
2 changed files with 31 additions and 7 deletions
|
@ -92,6 +92,15 @@ Proof.
|
|||
move => ->. eauto using T_Pair.
|
||||
Qed.
|
||||
|
||||
Lemma T_Ind' s Γ P (a : PTm s) b c i U :
|
||||
U = subst_PTm (scons a VarPTm) P ->
|
||||
funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊢ PInd P a b c ∈ U.
|
||||
Proof. move =>->. apply T_Ind. Qed.
|
||||
|
||||
Lemma T_Proj2' n Γ (a : PTm n) A B U :
|
||||
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
|
@ -103,9 +112,7 @@ Lemma E_Proj2' n Γ i (a b : PTm n) A B U :
|
|||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ U.
|
||||
Proof.
|
||||
move => ->. apply E_Proj2.
|
||||
Qed.
|
||||
Proof. move => ->. apply E_Proj2. Qed.
|
||||
|
||||
Lemma E_Bind' n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ A0 ∈ PUniv i ->
|
||||
|
@ -184,6 +191,7 @@ Proof.
|
|||
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ξ hξ hΔ.
|
||||
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||||
- move => n Γ a A B ha iha m Δ ξ hΔ hξ. apply : T_Proj2'; eauto. by asimpl.
|
||||
- admit.
|
||||
- hauto lq:on ctrs:Wt,LEq.
|
||||
- hauto lq:on ctrs:Eq.
|
||||
- hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up.
|
||||
|
@ -199,6 +207,7 @@ Proof.
|
|||
move : ihb hΔ hξ. repeat move/[apply].
|
||||
by asimpl.
|
||||
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||||
- admit.
|
||||
- qauto l:on ctrs:Eq, LEq.
|
||||
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ξ hΔ hξ.
|
||||
move : ihP (hξ) (hΔ). repeat move/[apply].
|
||||
|
@ -216,6 +225,8 @@ Proof.
|
|||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ hΔ hξ.
|
||||
apply : E_ProjPair2'; eauto. by asimpl.
|
||||
move : ihb hξ hΔ; repeat move/[apply]. by asimpl.
|
||||
- admit.
|
||||
- admit.
|
||||
- move => *.
|
||||
apply : E_AppEta'; eauto. by asimpl.
|
||||
- qauto l:on use:E_PairEta.
|
||||
|
@ -228,7 +239,7 @@ Proof.
|
|||
- qauto l:on ctrs:LEq.
|
||||
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||||
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||||
Qed.
|
||||
Admitted.
|
||||
|
||||
Definition morphing_ok {n m} Δ Γ (ρ : fin n -> PTm m) :=
|
||||
forall i, Δ ⊢ ρ i ∈ subst_PTm ρ (Γ i).
|
||||
|
@ -342,6 +353,10 @@ Proof.
|
|||
- move => *. apply : T_Proj2'; eauto. by asimpl.
|
||||
- hauto lq:on ctrs:Wt,LEq.
|
||||
- qauto l:on ctrs:Wt.
|
||||
- qauto l:on ctrs:Wt.
|
||||
- qauto l:on ctrs:Wt.
|
||||
- admit.
|
||||
- qauto l:on ctrs:Wt.
|
||||
- hauto lq:on ctrs:Eq.
|
||||
- hauto lq:on ctrs:Eq.
|
||||
- hauto lq:on ctrs:Eq.
|
||||
|
@ -359,6 +374,7 @@ Proof.
|
|||
by asimpl.
|
||||
- hauto q:on ctrs:Eq.
|
||||
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||||
- admit.
|
||||
- qauto l:on ctrs:Eq, LEq.
|
||||
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ρ hΔ hρ.
|
||||
move : ihP (hρ) (hΔ). repeat move/[apply].
|
||||
|
@ -376,6 +392,8 @@ Proof.
|
|||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hΔ hρ.
|
||||
apply : E_ProjPair2'; eauto. by asimpl.
|
||||
move : ihb hρ hΔ; repeat move/[apply]. by asimpl.
|
||||
- admit.
|
||||
- admit.
|
||||
- move => *.
|
||||
apply : E_AppEta'; eauto. by asimpl.
|
||||
- qauto l:on use:E_PairEta.
|
||||
|
@ -388,7 +406,7 @@ Proof.
|
|||
- qauto l:on ctrs:LEq.
|
||||
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||||
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||||
Qed.
|
||||
Admitted.
|
||||
|
||||
Lemma morphing_wt : forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ρ : fin n -> PTm m), ⊢ Δ -> morphing_ok Δ Γ ρ -> Δ ⊢ subst_PTm ρ a ∈ subst_PTm ρ A.
|
||||
Proof. sfirstorder use:morphing. Qed.
|
||||
|
@ -505,6 +523,7 @@ Proof.
|
|||
exists j. have : Γ ⊢ PProj PL a ∈ A by qauto use:T_Proj1.
|
||||
move : substing_wt h1; repeat move/[apply].
|
||||
by asimpl.
|
||||
- admit.
|
||||
- sfirstorder.
|
||||
- sfirstorder.
|
||||
- sfirstorder.
|
||||
|
@ -535,9 +554,12 @@ Proof.
|
|||
eauto using bind_inst.
|
||||
move /T_Proj1 in iha.
|
||||
hauto lq:on ctrs:Wt,Eq,LEq use:Bind_Inv, substing_wt.
|
||||
- admit.
|
||||
- hauto lq:on ctrs:Wt.
|
||||
- hauto q:on use:substing_wt db:wt.
|
||||
- hauto l:on use:bind_inst db:wt.
|
||||
- admit.
|
||||
- admit.
|
||||
- move => n Γ b A B i hΓ ihΓ hP _ hb [i0 ihb].
|
||||
repeat split => //=; eauto with wt.
|
||||
have {}hb : funcomp (ren_PTm shift) (scons A Γ) ⊢ ren_PTm shift b ∈ ren_PTm shift (PBind PPi A B)
|
||||
|
@ -603,7 +625,7 @@ Proof.
|
|||
+ apply Cumulativity with (i := i1); eauto.
|
||||
have : Γ ⊢ a1 ∈ A1 by eauto using T_Conv.
|
||||
move : substing_wt ih1';repeat move/[apply]. by asimpl.
|
||||
Qed.
|
||||
Admitted.
|
||||
|
||||
Lemma Var_Inv n Γ (i : fin n) A :
|
||||
Γ ⊢ VarPTm i ∈ A ->
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue