diff --git a/theories/Autosubst2/syntax.v b/theories/Autosubst2/syntax.v index aae3e02..5d04c05 100644 --- a/theories/Autosubst2/syntax.v +++ b/theories/Autosubst2/syntax.v @@ -1048,9 +1048,9 @@ Arguments PApp {n_PTm}. Arguments PAbs {n_PTm}. -#[global] Hint Opaque subst_PTm: rewrite. +#[global]Hint Opaque subst_PTm: rewrite. -#[global] Hint Opaque ren_PTm: rewrite. +#[global]Hint Opaque ren_PTm: rewrite. End Extra. diff --git a/theories/logrel.v b/theories/logrel.v index bea6f98..5699789 100644 --- a/theories/logrel.v +++ b/theories/logrel.v @@ -1388,8 +1388,6 @@ Proof. hauto q:on use:REReds.suc_inv, REReds.SucCong. Qed. - - Lemma SE_IndCong n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i : funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P0 ≡ P1 ∈ PUniv i -> Γ ⊨ a0 ≡ a1 ∈ PNat -> @@ -1405,7 +1403,18 @@ Proof. apply ST_Conv_E with (A := subst_PTm (scons a1 VarPTm) P1) (i := i); last by eauto using DJoin.cong', DJoin.symmetric. apply : ST_Ind; eauto. eapply ST_Conv_E with (i := i); eauto. + change (PUniv i) with (subst_PTm (scons PZero VarPTm) (@PUniv (S n) i)). + apply : morphing_SemWt; eauto. + apply smorphing_ext. rewrite /smorphing_ok. + move => ξ. rewrite /funcomp. by asimpl. + by apply ST_Zero. + by apply DJoin.substing. move {hc0}. + move => ρ hρ. + have : ρ_ok (funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ)))) ρ. + move : Γ_eq_ρ_ok hρ => /[apply]. + apply. + apply Γ_eq_cons. Lemma SE_ProjPair1 n Γ (a b : PTm n) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) ->