181 lines
5.3 KiB
Coq
181 lines
5.3 KiB
Coq
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax fp_red.
|
||
Require Import ssreflect ssrbool.
|
||
From Hammer Require Import Tactics.
|
||
From stdpp Require Import relations (rtc(..)).
|
||
|
||
Module Compile.
|
||
Fixpoint F {n} (a : Tm n) : Tm n :=
|
||
match a with
|
||
| TBind p A B => Pair (Pair (Const p) (F A)) (Abs (F B))
|
||
| Const k => Const k
|
||
| Univ i => Univ i
|
||
| Abs a => Abs (F a)
|
||
| App a b => App (F a) (F b)
|
||
| VarTm i => VarTm i
|
||
| Pair a b => Pair (F a) (F b)
|
||
| Proj t a => Proj t (F a)
|
||
| Bot => Bot
|
||
end.
|
||
|
||
Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) :
|
||
F (ren_Tm ξ a)= ren_Tm ξ (F a).
|
||
Proof. move : m ξ. elim : n / a => //=; scongruence. Qed.
|
||
|
||
#[local]Hint Rewrite Compile.renaming : compile.
|
||
|
||
Lemma morphing n m (a : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
|
||
(forall i, ρ0 i = F (ρ1 i)) ->
|
||
subst_Tm ρ0 (F a) = F (subst_Tm ρ1 a).
|
||
Proof.
|
||
move : m ρ0 ρ1. elim : n / a => n//=.
|
||
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
|
||
- hauto lq:on rew:off.
|
||
- hauto lq:on rew:off.
|
||
- hauto lq:on.
|
||
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
|
||
Qed.
|
||
|
||
Lemma substing n b (a : Tm (S n)) :
|
||
subst_Tm (scons (F b) VarTm) (F a) = F (subst_Tm (scons b VarTm) a).
|
||
Proof.
|
||
apply morphing.
|
||
case => //=.
|
||
Qed.
|
||
|
||
End Compile.
|
||
|
||
#[export] Hint Rewrite Compile.renaming Compile.morphing : compile.
|
||
|
||
|
||
Module Join.
|
||
Definition R {n} (a b : Tm n) := join (Compile.F a) (Compile.F b).
|
||
|
||
Lemma BindInj n p0 p1 (A0 A1 : Tm n) B0 B1 :
|
||
R (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ R A0 A1 /\ R B0 B1.
|
||
Proof.
|
||
rewrite /R /= !join_pair_inj.
|
||
move => [[/join_const_inj h0 h1] h2].
|
||
apply abs_eq in h2.
|
||
evar (t : Tm (S n)).
|
||
have : join (App (ren_Tm shift (Abs (Compile.F B1))) (VarTm var_zero)) t by
|
||
apply Join.FromPar; apply Par.AppAbs; auto using Par.refl.
|
||
subst t. rewrite -/ren_Tm.
|
||
move : h2. move /join_transitive => /[apply]. asimpl => h2.
|
||
tauto.
|
||
Qed.
|
||
|
||
Lemma UnivInj n i j : R (Univ i : Tm n) (Univ j) -> i = j.
|
||
Proof. hauto l:on use:join_univ_inj. Qed.
|
||
|
||
Lemma transitive n (a b c : Tm n) :
|
||
R a b -> R b c -> R a c.
|
||
Proof. hauto l:on use:join_transitive unfold:R. Qed.
|
||
|
||
Lemma symmetric n (a b : Tm n) :
|
||
R a b -> R b a.
|
||
Proof. hauto l:on use:join_symmetric. Qed.
|
||
|
||
Lemma reflexive n (a : Tm n) :
|
||
R a a.
|
||
Proof. hauto l:on use:join_refl. Qed.
|
||
|
||
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
||
R a b -> R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
rewrite /R.
|
||
rewrite /join.
|
||
move => [C [h0 h1]].
|
||
repeat (rewrite <- Compile.morphing with (ρ0 := funcomp Compile.F ρ); last by reflexivity).
|
||
hauto lq:on use:join_substing.
|
||
Qed.
|
||
|
||
End Join.
|
||
|
||
Module Equiv.
|
||
Inductive R {n} : Tm n -> Tm n -> Prop :=
|
||
(***************** Beta ***********************)
|
||
| AppAbs a b :
|
||
R (App (Abs a) b) (subst_Tm (scons b VarTm) a)
|
||
| ProjPair p a b :
|
||
R (Proj p (Pair a b)) (if p is PL then a else b)
|
||
|
||
(****************** Eta ***********************)
|
||
| AppEta a :
|
||
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
|
||
| PairEta a :
|
||
R a (Pair (Proj PL a) (Proj PR a))
|
||
|
||
(*************** Congruence ********************)
|
||
| Var i : R (VarTm i) (VarTm i)
|
||
| AbsCong a b :
|
||
R a b ->
|
||
R (Abs a) (Abs b)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (App a0 b0) (App a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (Pair a0 b0) (Pair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (Proj p a0) (Proj p a1)
|
||
| BindCong p A0 A1 B0 B1:
|
||
R A0 A1 ->
|
||
R B0 B1 ->
|
||
R (TBind p A0 B0) (TBind p A1 B1)
|
||
| UnivCong i :
|
||
R (Univ i) (Univ i).
|
||
End Equiv.
|
||
|
||
Module EquivJoin.
|
||
Lemma FromEquiv n (a b : Tm n) : Equiv.R a b -> Join.R a b.
|
||
Proof.
|
||
move => h. elim : n a b /h => n.
|
||
- move => a b.
|
||
rewrite /Join.R /join /=.
|
||
eexists. split. apply relations.rtc_once.
|
||
apply Par.AppAbs; auto using Par.refl.
|
||
rewrite Compile.substing.
|
||
apply relations.rtc_refl.
|
||
- move => p a b.
|
||
apply Join.FromPar.
|
||
simpl. apply : Par.ProjPair'; auto using Par.refl.
|
||
case : p => //=.
|
||
- move => a. apply Join.FromPar => /=.
|
||
apply : Par.AppEta'; auto using Par.refl.
|
||
by autorewrite with compile.
|
||
- move => a. apply Join.FromPar => /=.
|
||
apply : Par.PairEta; auto using Par.refl.
|
||
- hauto l:on use:Join.FromPar, Par.Var.
|
||
- hauto lq:on use:Join.AbsCong.
|
||
- qauto l:on use:Join.AppCong.
|
||
- qauto l:on use:Join.PairCong.
|
||
- qauto use:Join.ProjCong.
|
||
- rewrite /Join.R => p A0 A1 B0 B1 _ hA _ hB /=.
|
||
sfirstorder use:Join.PairCong,Join.AbsCong,Join.FromPar,Par.ConstCong.
|
||
- hauto l:on.
|
||
Qed.
|
||
End EquivJoin.
|
||
|
||
Lemma compile_rpar n (a b : Tm n) : RPar'.R a b -> RPar'.R (Compile.F a) (Compile.F b).
|
||
Proof.
|
||
move => h. elim : n a b /h.
|
||
- move => n a0 a1 b0 b1 ha iha hb ihb /=.
|
||
rewrite -Compile.substing.
|
||
apply RPar'.AppAbs => //.
|
||
- hauto q:on use:RPar'.ProjPair'.
|
||
- qauto ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
- hauto lq:on ctrs:RPar'.R.
|
||
Qed.
|
||
|
||
Lemma compile_rpars n (a b : Tm n) : rtc RPar'.R a b -> rtc RPar'.R (Compile.F a) (Compile.F b).
|
||
Proof. induction 1; hauto lq:on ctrs:rtc use:compile_rpar. Qed.
|