228 lines
7.2 KiB
Coq
228 lines
7.2 KiB
Coq
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
|
Require Import fp_red.
|
|
From Hammer Require Import Tactics.
|
|
From Equations Require Import Equations.
|
|
Require Import ssreflect ssrbool.
|
|
Require Import Logic.PropExtensionality (propositional_extensionality).
|
|
From stdpp Require Import relations (rtc(..)).
|
|
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
|
(PF : Tm n -> (Tm n -> Prop) -> Prop) : Tm n -> Prop :=
|
|
fun b => forall a PB, PA a -> PF a PB -> PB (App b a).
|
|
|
|
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
|
Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
|
|
| InterpExt_Fun A B PA PF :
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
(forall a, PA a -> exists PB, PF a PB) ->
|
|
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
|
⟦ TBind TPi A B ⟧ i ;; I ↘ (ProdSpace PA PF)
|
|
|
|
| InterpExt_Univ j :
|
|
j < i ->
|
|
⟦ Univ j ⟧ i ;; I ↘ (I n j)
|
|
|
|
| InterpExt_Step A A0 PA :
|
|
RPar.R A A0 ->
|
|
⟦ A0 ⟧ i ;; I ↘ PA ->
|
|
⟦ A ⟧ i ;; I ↘ PA
|
|
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
|
|
|
Lemma InterpExt_Univ' {n} i I j (PF : Tm n -> Prop) :
|
|
PF = I n j ->
|
|
j < i ->
|
|
⟦ Univ j ⟧ i ;; I ↘ PF.
|
|
Proof. hauto lq:on ctrs:InterpExt. Qed.
|
|
|
|
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
|
|
|
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
|
|
InterpUnivN n i := @InterpExt n i
|
|
(fun n j A =>
|
|
match j <? i with
|
|
| left _ => exists PA, InterpUnivN n j A PA
|
|
| right _ => False
|
|
end).
|
|
Arguments InterpUnivN {n}.
|
|
|
|
Lemma InterpExt_lt_impl {n : nat} i I I' A (PA : Tm n -> Prop) :
|
|
(forall j, j < i -> I n j = I' n j) ->
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
⟦ A ⟧ i ;; I' ↘ PA.
|
|
Proof.
|
|
move => hI h.
|
|
elim : A PA /h.
|
|
- hauto lq:on rew:off ctrs:InterpExt.
|
|
- hauto q:on ctrs:InterpExt.
|
|
- hauto lq:on ctrs:InterpExt.
|
|
Qed.
|
|
|
|
Lemma InterpExt_lt_eq {n : nat} i I I' A (PA : Tm n -> Prop) :
|
|
(forall j, j < i -> I n j = I' n j) ->
|
|
⟦ A ⟧ i ;; I ↘ PA =
|
|
⟦ A ⟧ i ;; I' ↘ PA.
|
|
Proof.
|
|
move => hI. apply propositional_extensionality.
|
|
have : forall j, j < i -> I' n j = I n j by sfirstorder.
|
|
firstorder using InterpExt_lt_impl.
|
|
Qed.
|
|
|
|
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
|
|
|
Lemma InterpUnivN_nolt n i :
|
|
@InterpUnivN n i = @InterpExt n i (fun n j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
|
Proof.
|
|
simp InterpUnivN.
|
|
extensionality A. extensionality PA.
|
|
set I0 := (fun _ => _).
|
|
set I1 := (fun _ => _).
|
|
apply InterpExt_lt_eq.
|
|
hauto q:on.
|
|
Qed.
|
|
|
|
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
|
|
|
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
|
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
|
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
|
|
|
Lemma InterpExt_Fun_inv n i I (A : Tm n) B P
|
|
(h : ⟦ TBind TPi A B ⟧ i ;; I ↘ P) :
|
|
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
|
⟦ A ⟧ i ;; I ↘ PA /\
|
|
(forall a, PA a -> exists PB, PF a PB) /\
|
|
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
|
P = ProdSpace PA PF.
|
|
Proof.
|
|
move E : (TBind TPi A B) h => T h.
|
|
move : A B E.
|
|
elim : T P / h => //.
|
|
- hauto l:on.
|
|
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
|
elim /RPar.inv : hA => //= _ p A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
|
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
|
Qed.
|
|
|
|
Lemma InterpExt_Fun_nopf n i I (A : Tm n) B PA :
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
|
⟦ Pi A B ⟧ i ;; I ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
|
Proof.
|
|
move => h0 h1. apply InterpExt_Fun =>//.
|
|
Qed.
|
|
|
|
Lemma InterpUnivN_Fun_nopf n i (A : Tm n) B PA :
|
|
⟦ A ⟧ i ↘ PA ->
|
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
|
⟦ Pi A B ⟧ i ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
|
Proof.
|
|
hauto l:on use:InterpExt_Fun_nopf rew:db:InterpUniv.
|
|
Qed.
|
|
|
|
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
|
i < j ->
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
⟦ A ⟧ j ;; I ↘ PA.
|
|
Proof.
|
|
move => h h0.
|
|
elim : A PA /h0;
|
|
hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans.
|
|
Qed.
|
|
|
|
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
|
|
⟦ A ⟧ i ↘ PA -> forall j, i < j ->
|
|
⟦ A ⟧ j ↘ PA.
|
|
Proof.
|
|
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
|
Qed.
|
|
|
|
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
|
RPar.R A B ->
|
|
⟦ B ⟧ i ;; I ↘ P.
|
|
Proof.
|
|
move : B.
|
|
elim : A P / h; auto.
|
|
- move => A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
|
elim /RPar.inv : hT => //.
|
|
move => hPar A0 A1 B0 B1 h0 h1 [? ?] ?; subst.
|
|
apply InterpExt_Fun; auto.
|
|
move => a PB hPB0.
|
|
apply : ihPB; eauto.
|
|
sfirstorder use:RPar.cong, RPar.refl.
|
|
- hauto lq:on inv:RPar.R ctrs:InterpExt.
|
|
- move => A B P h0 h1 ih1 C hC.
|
|
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
|
|
hauto lq:on ctrs:InterpExt.
|
|
Qed.
|
|
|
|
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
|
RPar.R A B ->
|
|
⟦ B ⟧ i ↘ P.
|
|
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
|
|
|
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
|
rtc RPar.R A B ->
|
|
⟦ A ⟧ i ;; I ↘ P.
|
|
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
|
|
|
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
|
rtc RPar.R A B ->
|
|
⟦ B ⟧ i ;; I ↘ P.
|
|
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
|
|
|
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
|
rtc RPar.R A B ->
|
|
⟦ B ⟧ i ↘ P.
|
|
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
|
|
|
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) :
|
|
rtc RPar.R A B ->
|
|
⟦ A ⟧ i ↘ P.
|
|
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
|
|
|
Definition ty_hf {n} (a : Tm n) :=
|
|
match a with
|
|
| Pi _ _ => true
|
|
| Univ _ => true
|
|
| _ => false
|
|
end.
|
|
|
|
Lemma InterpExtInv n i I (A : Tm n) PA :
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
exists B, ty_hf B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
|
Proof.
|
|
move => h. elim : A PA /h.
|
|
- move => A B PA PF hPA _ hPF hPF0 _.
|
|
exists (Pi A B). repeat split => //=.
|
|
apply rtc_refl.
|
|
hauto l:on ctrs:InterpExt.
|
|
- move => j ?. exists (Univ j).
|
|
hauto l:on ctrs:InterpExt.
|
|
- hauto lq:on ctrs:rtc.
|
|
Qed.
|
|
|
|
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
|
⟦ A ⟧ i ;; I ↘ PA ->
|
|
⟦ B ⟧ i ;; I ↘ PB ->
|
|
join A B ->
|
|
PA = PB.
|
|
Proof.
|
|
move => h. move : B PB. elim : A PA /h.
|
|
- move => A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
|
move => [B0 []].
|
|
case : B0 => //=.
|
|
+ move => A0 B0 _ [hr hPi].
|
|
move /InterpExt_Fun_inv : hPi.
|
|
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
|
move => hjoin.
|
|
have ? : join A A0 by admit.
|
|
have ? : join B B0 by admit.
|
|
have ? : PA0 = PA by hauto l:on. subst.
|
|
rewrite /ProdSpace.
|
|
extensionality b.
|
|
apply propositional_extensionality.
|
|
admit.
|
|
(* Contradiction *)
|
|
+ admit.
|
|
- admit.
|
|
- admit.
|
|
Admitted.
|