pair-eta/theories/fp_red.v
2024-12-21 00:57:00 -05:00

436 lines
12 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Require Import ssreflect.
From stdpp Require Import relations (rtc (..), rtc_once).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
(* Trying my best to not write C style module_funcname *)
Module Par.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| Proj1Abs a0 a1 :
R a0 a1 ->
R (Proj1 (Abs a0)) (Abs (Proj1 a0))
| Proj1Pair a0 a1 b :
R a0 a1 ->
R (Proj1 (Pair a0 b)) a1
| Proj2Abs a0 a1 :
R a0 a1 ->
R (Proj2 (Abs a0)) (Abs (Proj2 a0))
| Proj2Pair a0 a1 b :
R a0 a1 ->
R (Proj2 (Pair b a0)) a1
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj1 a1) (Proj2 a1))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| Proj1Cong a0 a1 :
R a0 a1 ->
R (Proj1 a0) (Proj1 a1)
| Proj2Cong a0 a1 :
R a0 a1 ->
R (Proj2 a0) (Proj2 a1).
End Par.
(***************** Beta rules only ***********************)
Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| Proj1Abs a0 a1 :
R a0 a1 ->
R (Proj1 (Abs a0)) (Abs (Proj1 a0))
| Proj1Pair a0 a1 b :
R a0 a1 ->
R (Proj1 (Pair a0 b)) a1
| Proj2Abs a0 a1 :
R a0 a1 ->
R (Proj2 (Abs a0)) (Abs (Proj2 a0))
| Proj2Pair a0 a1 b :
R a0 a1 ->
R (Proj2 (Pair b a0)) a1
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| Proj1Cong a0 a1 :
R a0 a1 ->
R (Proj1 a0) (Proj1 a1)
| Proj2Cong a0 a1 :
R a0 a1 ->
R (Proj2 a0) (Proj2 a1).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma refl n (a : Tm n) : R a a.
Proof.
induction a; hauto lq:on ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : qauto ctrs:R.
Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => h. move : m ρ0 ρ1.
elim : n a b /h.
Admitted.
End RPar.
Module EPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj1 a1) (Proj2 a1))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| Proj1Cong a0 a1 :
R a0 a1 ->
R (Proj1 a0) (Proj1 a1)
| Proj2Cong a0 a1 :
R a0 a1 ->
R (Proj2 a0) (Proj2 a1).
Lemma refl n (a : Tm n) : EPar.R a a.
Proof.
induction a; hauto lq:on ctrs:EPar.R.
Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => n a0 a1 ha iha m ξ /=.
move /(_ _ ξ) /AppEta : iha.
by asimpl.
all : qauto ctrs:R.
Qed.
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => h. move : m ρ0 ρ1. elim : n a b / h => n.
- move => a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
Qed.
Lemma substing n a0 a1 (b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
R (subst_Tm (scons b0 VarTm) a0) (subst_Tm (scons b1 VarTm) a1).
Proof.
move => h0 h1. apply morphing => //.
hauto lq:on ctrs:R inv:option.
Qed.
End EPar.
Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
Module RPars.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:RPar.R use:RPar.refl.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong n (a b : Tm (S n)) :
rtc RPar.R a b ->
rtc RPar.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
Lemma Proj1Cong n (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (Proj1 a0) (Proj1 a1).
Proof. solve_s. Qed.
Lemma Proj2Cong n (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (Proj2 a0) (Proj2 a1).
Proof. solve_s. Qed.
Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1).
Proof.
induction 1.
- apply rtc_refl.
- eauto using RPar.renaming, rtc_l.
Qed.
Lemma weakening n (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm shift a0) (ren_Tm shift a1).
Proof. apply renaming. Qed.
Lemma Abs_inv n (a : Tm (S n)) b :
rtc RPar.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar.R a a'.
Proof.
move E : (Abs a) => b0 h. move : a E.
elim : b0 b / h.
- hauto lq:on ctrs:rtc.
- hauto lq:on ctrs:rtc inv:RPar.R, rtc.
Qed.
End RPars.
Lemma Abs_EPar n a (b : Tm n) :
EPar.R (Abs a) b ->
(exists d, EPar.R a d /\
rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\
(exists d,
EPar.R a d /\
rtc RPar.R (Proj1 b) (Abs (Proj1 d)) /\
rtc RPar.R (Proj2 b) (Abs (Proj2 d))).
Proof.
move E : (Abs a) => u h.
move : a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [[d [ih0 ih1]] _].
split; exists d.
+ split => //.
apply : rtc_l.
apply RPar.AppAbs; eauto => //=.
apply RPar.refl.
by apply RPar.refl.
move :ih1; substify; by asimpl.
+ repeat split => //.
* apply : rtc_l.
apply : RPar.Proj1Abs.
by apply RPar.refl.
eauto using RPars.Proj1Cong, RPars.AbsCong.
* apply : rtc_l.
apply : RPar.Proj2Abs.
by apply RPar.refl.
eauto using RPars.Proj2Cong, RPars.AbsCong.
- move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl).
move : iha => [_ [d [ih0 [ih1 ih2]]]].
split.
+ apply RPars.weakening in ih1, ih2.
exists (Pair (Proj1 d) (Proj2 d)).
split; first by by by apply EPar.PairEta.
apply : rtc_l.
apply RPar.AppPair; eauto using RPar.refl.
suff : rtc RPar.R (App (Proj1 (ren_Tm shift a1)) (VarTm var_zero)) (Proj1 d) /\
rtc RPar.R (App (Proj2 (ren_Tm shift a1)) (VarTm var_zero)) (Proj2 d)
by firstorder using RPars.PairCong.
split.
* apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj1 d))) (VarTm var_zero)).
by eauto using RPars.AppCong, rtc_refl.
apply relations.rtc_once => /=.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
* apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj2 d))) (VarTm var_zero)).
by eauto using RPars.AppCong, rtc_refl.
apply relations.rtc_once => /=.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
+ exists d. repeat split => //.
apply : rtc_l;eauto. apply RPar.Proj1Pair. eauto using RPar.refl.
apply : rtc_l;eauto. apply RPar.Proj2Pair. eauto using RPar.refl.
- move => n a0 a1 ha _ ? [*]. subst.
split.
+ exists a1. split => //.
apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl.
+ exists a1. repeat split => //=.
apply rtc_once. apply : RPar.Proj1Abs; eauto using RPar.refl.
apply rtc_once. apply : RPar.Proj2Abs; eauto using RPar.refl.
Qed.
Lemma commutativity n (a b0 b1 : Tm n) :
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => h. move : b1.
elim : n a b0 / h.
- move => n a b0 ha iha b1 hb.
move : iha (hb) => /[apply].
move => [c [ih0 ih1]].
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))).
split.
+ hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0.
move => [c [ih0 ih1]].
exists (Pair (Proj1 c) (Proj2 c)). split.
+ apply RPars.PairCong.
by apply RPars.Proj1Cong.
by apply RPars.Proj2Cong.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- hauto l:on ctrs:rtc inv:RPar.R.
- move => n a0 a1 h ih b1.
elim /RPar.inv => //= _.
move => a2 a3 ? [*]. subst.
hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong.
- move => n a0 a1 b0 b1 ha iha hb ihb b2.
elim /RPar.inv => //= _.
+ move => a2 a3 b3 b4 h0 h1 [*]. subst.
move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]].
have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R.
move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]].
exists (subst_Tm (scons b VarTm) d).
split.
(* By substitution *)
* admit.
(* By EPar morphing *)
* by apply EPar.substing.
+ move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst.
admit.
+ hauto lq:on ctrs:EPar.R use:RPars.AppCong.
- hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong.
- move => n a b0 h0 ih0 b1.
elim /RPar.inv => //= _.
+ move => a0 a1 h [*]. subst.
admit.
+ move => a0 ? a1 h1 [*]. subst.
admit.
+ hauto lq:on ctrs:RPar.R, EPar.R.
- move => n a b0 h0 ih0 b1.
elim /RPar.inv => //= _.
+ move => a0 a1 ha [*]. subst.
admit.
+ move => a0 a1 b2 h [*]. subst.
admit.
+ hauto lq:on ctrs:RPar.R, EPar.R.
Admitted.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
Lemma merge n (t a u : Tm n) :
EPar.R t a ->
RPar.R a u ->
Par.R t u.
Proof.
move => h. move : u.
elim:t a/h.
- move => n0 a0 a1 ha iha u hu.
apply iha.
inversion hu; subst.
- hauto lq:on inv:RPar.R.
- move => a0 a1 b0 b1 ha iha hb ihb u.
inversion 1; subst.
+ inversion ha.
best use:EPar_Par, RPar_Par.
best ctrs:Par.R inv:EPar.R,RPar.R use:EPar_Par, RPar_Par.