pair-eta/theories/typing_properties.v

134 lines
4.1 KiB
Coq

Require Import Autosubst2.core Autosubst2.unscoped compile Autosubst2.syntax ssreflect typing.
From Hammer Require Import Tactics.
Lemma Bind_Inv Γ p A B U :
Γ TBind p A B U ->
exists i, Γ A Univ i /\ cons A Γ B Univ i /\ Join.R (Univ i) U.
Proof.
move E : (TBind p A B) => u hu.
move : p A B E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma Univ_Inv Γ i U :
Γ Univ i U ->
Γ Univ i Univ (S i) /\ Join.R (Univ (S i)) U.
Proof.
move E : (Univ i) => u hu.
move : i E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma App_Inv Γ b a U :
Γ App b a U ->
exists A B, Γ b TBind TPi A B /\ Γ a A /\ Join.R (subst_Tm (scons a VarTm) B) U.
Proof.
move E : (App b a) => u hu.
move : b a E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma Abs_Inv Γ A a U :
Γ Abs A a U ->
exists B, cons A Γ a B /\ Join.R (TBind TPi A B) U.
Proof.
move E : (Abs A a) => u hu.
move : A a E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma Var_Inv Γ i U :
Γ VarTm i U ->
exists A, lookup i Γ A /\ Join.R A U.
Proof.
move E : (VarTm i) => u hu.
move : i E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma Pair_Inv Γ a b U :
Γ Pair a b U ->
exists A B, Γ a A /\ Γ b subst_Tm (scons a VarTm) B /\ Join.R (TBind TSig A B) U.
Proof.
move E : (Pair a b ) => u hu.
move : a b E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma ProjL_Inv Γ a U :
Γ Proj PL a U ->
exists A B, Γ a TBind TSig A B /\ Join.R A U.
Proof.
move E : (Proj PL a) => u hu.
move : a E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma ProjR_Inv Γ a U :
Γ Proj PR a U ->
exists A B, Γ a TBind TSig A B /\ Join.R (subst_Tm (scons (Proj PL a) VarTm) B) U.
Proof.
move E : (Proj PR a) => u hu.
move : a E.
elim : Γ u U / hu => //=; hauto lq:on ctrs:Wt use:Join.reflexive, Join.transitive.
Qed.
Lemma ctx_wff_mutual :
(forall Γ, Γ -> True) /\
(forall Γ a A, Γ a A -> Γ).
Proof. apply wt_mutual => //=. Qed.
Lemma lookup_deter i Γ A A0 :
lookup i Γ A ->
lookup i Γ A0 -> A = A0.
Proof.
move => h. move : A0. elim : i Γ A / h; hauto lq:on inv:lookup.
Qed.
Lemma wt_unique :
(forall Γ, Γ -> True) /\
(forall Γ a A, Γ a A -> forall B, Γ a B -> Join.R A B).
Proof.
apply wt_mutual => //=.
- move => i Γ A _ hl B.
move /Var_Inv.
move => [A0 [h0 h1]].
move : hl h0.
move : lookup_deter; repeat move/[apply]. move => ?. by subst.
- move => Γ i p A B hA ihA hB ihB U.
move /Bind_Inv => [j][ih0][ih1]ih2.
apply ihB in ih1.
move /Join.UnivInj in ih1. by subst.
- move => Γ a A B i hP ihP ha iha U.
move /Abs_Inv => [B0][ha']hJ.
move /iha in ha' => {iha}.
apply : Join.transitive; eauto.
apply Join.BindCong; eauto using Join.reflexive.
- move => Γ b a A B hb ihb ha iha U.
move /App_Inv. move => [A0][B0][hb'][ha']hU.
apply ihb in hb' => {ihb}.
move /Join.BindInj : hb'.
move => [_][hJ0]hJ1.
apply : Join.transitive; eauto.
by apply Join.substing.
- move => Γ a b A B i hS ihS ha iha hb ihb U.
move /Pair_Inv.
move => [A0][B0][{}/iha ha'][{}/ihb hb']hJ.
apply : Join.transitive; eauto.
apply Join.BindCong; eauto.
admit.
- move => Γ a A B ha iha U.
move /ProjL_Inv.
move => [A0][B0][{}/iha ha0]hU.
apply Join.BindInj in ha0.
decompose record ha0.
eauto using Join.transitive.
- move => Γ a A B ha iha U /ProjR_Inv [A0][B0][{}/iha /Join.BindInj ha'].
decompose record ha'.
move => h. apply : Join.transitive; eauto.
by apply Join.substing.
- move => Γ i _ B /Univ_Inv. tauto.
- move => Γ a A B i ha iha hb ihb.
move => h0 B0 {}/iha ha'.
eauto using Join.symmetric, Join.transitive.
Admitted.