From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat. Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax. Ltac2 spec_refl () := List.iter (fun a => match a with | (i, _, _) => let h := Control.hyp i in try (specialize $h with (1 := eq_refl)) end) (Control.hyps ()). Ltac spec_refl := ltac2:(spec_refl ()). (* Trying my best to not write C style module_funcname *) Module Par. Inductive R : PTm -> PTm -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (PApp (PPair a0 b0) c0) (PPair (PApp a1 c1) (PApp b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (PProj p (PAbs a0)) (PAbs (PProj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (PPair (PProj PL a1) (PProj PR a1)) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | Univ i : R (PUniv i) (PUniv i) | Bot : R PBot PBot. Lemma refl (a : PTm) : R a a. elim : a; hauto ctrs:R. Qed. Lemma AppAbs' a0 a1 (b0 b1 t : PTm) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' p (a0 a1 b0 b1 : PTm) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma AppEta' (a0 a1 b : PTm) : b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : ξ. elim : a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : match goal with | [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl | _ => qauto ctrs:R use:ProjPair' end. Qed. Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : ρ0 ρ1. elim : a b/h. - move => a0 a1 b0 b1 ha iha hb ihb ρ0 ρ1 hρ /=. eapply AppAbs' with (a1 := subst_PTm (up_PTm_PTm ρ1) a1); eauto. by asimpl. hauto l:on use:renaming inv:nat. - hauto lq:on rew:off ctrs:R. - hauto l:on inv:nat use:renaming ctrs:R. - hauto lq:on use:ProjPair'. - move => a0 a1 ha iha ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - sfirstorder. - hauto l:on inv:nat ctrs:R use:renaming. - hauto q:on ctrs:R. - qauto l:on ctrs:R. - qauto l:on ctrs:R. - hauto l:on inv:option ctrs:R use:renaming. - qauto l:on ctrs:R. - qauto l:on ctrs:R. Qed. Lemma substing (a b : PTm) (ρ : nat -> PTm) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma antirenaming (a : PTm) (b : PTm) (ξ : nat -> nat) : R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. Proof. move E : (ren_PTm ξ a) => u h. move : ξ a E. elim : u b/h. - move => a0 a1 b0 b1 ha iha hb ihb ξ []//=. move => c c0 [+ ?]. subst. case : c => //=. move => c [?]. subst. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc ξ []//=. move => []//= t t0 t1 [*]. subst. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => p a0 a1 ha iha ξ []//= p0 []//= t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => p a0 a1 b0 b1 ha iha hb ihb ξ []//= p0 []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => a0 a1 ha iha ξ a ?. subst. spec_refl. move : iha => [a0 [? ?]]. subst. eexists. split. apply AppEta; eauto. by asimpl. - move => a0 a1 ha iha ξ a ?. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply PairEta; eauto. by asimpl. - move => i ξ []//=. hauto l:on. - move => a0 a1 ha iha ξ []//= t [*]. subst. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. done. - move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split=>/=. by apply PairCong; eauto. done. - move => p a0 a1 ha iha ξ []//= p0 t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. by apply ProjCong; eauto. done. - hauto q:on inv:PTm ctrs:R. - hauto q:on inv:PTm ctrs:R. - hauto q:on inv:PTm ctrs:R. Qed. End Par. Module Pars. Lemma renaming (a b : PTm) (ξ : nat -> nat) : rtc Par.R a b -> rtc Par.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto lq:on ctrs:rtc use:Par.renaming. Qed. Lemma substing (a b : PTm) (ρ : nat -> PTm) : rtc Par.R a b -> rtc Par.R (subst_PTm ρ a) (subst_PTm ρ b). induction 1; hauto l:on ctrs:rtc use:Par.substing. Qed. Lemma antirenaming (a : PTm) (b : PTm) (ξ : nat -> nat) : rtc Par.R (ren_PTm ξ a) b -> exists b0, rtc Par.R a b0 /\ ren_PTm ξ b0 = b. Proof. move E :(ren_PTm ξ a) => u h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /Par.antirenaming : h0. move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:Par.R use:Par.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma ProjCong p (a0 a1 : PTm) : rtc Par.R a0 a1 -> rtc Par.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma AbsCong (a b : PTm) : rtc Par.R a b -> rtc Par.R (PAbs a) (PAbs b). Proof. solve_s. Qed. End Pars. Definition var_or_const (a : PTm) := match a with | VarPTm _ => true | PBot => true | _ => false end. (***************** Beta rules only ***********************) Module RPar. Inductive R : PTm -> PTm -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (PApp (PPair a0 b0) c0) (PPair (PApp a1 c1) (PApp b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (PProj p (PAbs a0)) (PAbs (PProj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | Univ i : R (PUniv i) (PUniv i) | Bot : R PBot PBot. Derive Dependent Inversion inv with (forall (a b : PTm), R a b) Sort Prop. Lemma refl (a : PTm) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' a0 a1 (b0 b1 t : PTm) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' p (a0 a1 b0 b1 : PTm) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : ξ. elim : a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren (ρ0 ρ1 : nat -> PTm) (ξ : nat -> nat) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext (ρ0 ρ1 : nat -> PTm) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:nat. Qed. Lemma morphing_up (ρ0 ρ1 : nat -> PTm) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : ρ0 ρ1. elim : a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing (a b : PTm) (ρ : nat -> PTm) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong (a b : PTm) c d : R a b -> R c d -> R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b). Proof. move => h0 h1. apply morphing => //=. destruct i as [|i]. - done. - simpl. apply Var. Qed. Lemma var_or_const_imp (a b : PTm) : var_or_const a -> a = b -> ~~ var_or_const b -> False. Proof. hauto lq:on inv:PTm. Qed. Lemma var_or_const_up (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> (forall i, var_or_const (up_PTm_PTm ρ i)). Proof. move => h /= [|i]. - sfirstorder. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. Qed. Local Ltac antiimp := qauto l:on use:var_or_const_imp. Lemma antirenaming (a : PTm) (b : PTm) (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> R (subst_PTm ρ a) b -> exists b0, R a b0 /\ subst_PTm ρ b0 = b. Proof. move E : (subst_PTm ρ a) => u hρ h. move : ρ hρ a E. elim : u b/h. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_const_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc ρ hρ. move => []//=; first by antiimp. move => []//=; first by antiimp. move => t t0 t1 [*]. subst. have {}/iha := hρ => iha. have {}/ihb := hρ => ihb. have {}/ihc := hρ => ihc. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => p a0 a1 ha iha ρ hρ []//=; first by antiimp. move => p0 []//= t [*]; first by antiimp. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => p a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => i ρ hρ []//=. hauto l:on. - move => a0 a1 ha iha ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => p a0 a1 ha iha ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - hauto q:on ctrs:R inv:PTm. - hauto q:on ctrs:R inv:PTm. - hauto q:on ctrs:R inv:PTm. Qed. End RPar. (***************** Beta rules only ***********************) Module RPar'. Inductive R : PTm -> PTm -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | UnivCong i : R (PUniv i) (PUniv i) | BotCong : R PBot PBot. Derive Inversion inv with (forall (a b : PTm), R a b) Sort Prop. Lemma refl (a : PTm) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' a0 a1 (b0 b1 t : PTm) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' p (a0 a1 b0 b1 : PTm) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : ξ. elim : a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren (ρ0 ρ1 : nat -> PTm) (ξ : nat -> nat) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext (ρ0 ρ1 : nat -> PTm) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:nat. Qed. Lemma morphing_up (ρ0 ρ1 : nat -> PTm) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : ρ0 ρ1. elim : a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing (a b : PTm) (ρ : nat -> PTm) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong (a b : PTm) c d : R a b -> R c d -> R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b). Proof. move => h0 h1. apply morphing => //=. hauto l:on ctrs:R inv:nat. Qed. Lemma var_or_const_imp (a b : PTm) : var_or_const a -> a = b -> ~~ var_or_const b -> False. Proof. hauto lq:on inv:PTm. Qed. Lemma var_or_const_up (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> (forall i, var_or_const (up_PTm_PTm ρ i)). Proof. move => h /= [|i]. - sfirstorder. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. Qed. Local Ltac antiimp := qauto l:on use:var_or_const_imp. Lemma antirenaming (a : PTm) (b : PTm) (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> R (subst_PTm ρ a) b -> exists b0, R a b0 /\ subst_PTm ρ b0 = b. Proof. move E : (subst_PTm ρ a) => u hρ h. move : ρ hρ a E. elim : u b/h. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_const_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => p a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => i ρ hρ []//=. hauto l:on. - move => a0 a1 ha iha ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => a0 a1 b0 b1 ha iha hb ihb ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => p a0 a1 ha iha ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - hauto q:on ctrs:R inv:PTm. - move => i ρ hρ []//=; first by antiimp. hauto l:on. - hauto q:on inv:PTm ctrs:R. Qed. End RPar'. Module ERed. Inductive R : PTm -> PTm -> Prop := (****************** Eta ***********************) | AppEta a : R a (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) | PairEta a : R a (PPair (PProj PL a) (PProj PR a)) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1). Derive Inversion inv with (forall (a b : PTm), R a b) Sort Prop. Lemma AppEta' a (u : PTm) : u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) -> R a u. Proof. move => ->. apply AppEta. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : ξ. elim : a b /h. move => a ξ. apply AppEta'. by asimpl. all : qauto ctrs:R. Qed. Lemma substing (a : PTm) b (ρ : nat -> PTm) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. move => h. move : ρ. elim : a b / h. move => a ρ /=. apply : AppEta'; eauto. by asimpl. all : hauto ctrs:R inv:nat use:renaming. Qed. End ERed. Module EReds. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:ERed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong (a b : PTm) : rtc ERed.R a b -> rtc ERed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong p (a0 a1 : PTm) : rtc ERed.R a0 a1 -> rtc ERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. End EReds. Module EPar. Inductive R : PTm -> PTm -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (PPair (PProj PL a1) (PProj PR a1)) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | UnivCong i : R (PUniv i) (PUniv i) | BotCong : R PBot PBot. Lemma refl (a : PTm) : EPar.R a a. Proof. induction a; hauto lq:on ctrs:EPar.R. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : ξ. elim : a b /h. move => a0 a1 ha iha ξ /=. move /(_ ξ) /AppEta : iha. by asimpl. all : qauto ctrs:R. Qed. Derive Inversion inv with (forall (a b : PTm), R a b) Sort Prop. Lemma AppEta' (a0 a1 b : PTm) : b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => h. move : ρ0 ρ1. elim : a b / h. - move => a0 a1 ha iha ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:nat. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:nat. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing a0 a1 (b0 b1 : PTm) : R a0 a1 -> R b0 b1 -> R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1). Proof. move => h0 h1. apply morphing => //. hauto lq:on ctrs:R inv:nat. Qed. End EPar. Module OExp. Inductive R : PTm -> PTm -> Prop := (****************** Eta ***********************) | AppEta a : R a (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) | PairEta a : R a (PPair (PProj PL a) (PProj PR a)). Lemma merge (t a b : PTm) : rtc R a b -> EPar.R t a -> EPar.R t b. Proof. move => h. move : t. elim : a b /h. - eauto using EPar.refl. - hauto q:on ctrs:EPar.R inv:R. Qed. Lemma commutativity (a b c : PTm) : EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d. Proof. move => h. inversion 1; subst. - hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl. - hauto lq:on ctrs:EPar.R, R. Qed. Lemma commutativity0 (a b c : PTm) : EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d. Proof. move => + h. move : b. elim : a c / h. - sfirstorder. - hauto lq:on rew:off ctrs:rtc use:commutativity. Qed. End OExp. Local Ltac com_helper := split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming]. Module RPars. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar.R use:RPar.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong (a b : PTm) : rtc RPar.R a b -> rtc RPar.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong p (a0 a1 : PTm) : rtc RPar.R a0 a1 -> rtc RPar.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming (a0 a1 : PTm) (ξ : nat -> nat) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar.renaming, rtc_l. Qed. Lemma weakening (a0 a1 : PTm) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_PTm shift a0) (ren_PTm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv (a : PTm) b : rtc RPar.R (PAbs a) b -> exists a', b = PAbs a' /\ rtc RPar.R a a'. Proof. move E : (PAbs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. Lemma morphing (a b : PTm) (ρ : nat -> PTm) : rtc RPar.R a b -> rtc RPar.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed. Lemma substing (a b : PTm) c : rtc RPar.R a b -> rtc RPar.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b). Proof. hauto lq:on use:morphing inv:nat. Qed. Lemma antirenaming (a : PTm) (b : PTm) (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> rtc RPar.R (subst_PTm ρ a) b -> exists b0, rtc RPar.R a b0 /\ subst_PTm ρ b0 = b. Proof. move E :(subst_PTm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars. Module RPars'. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar'.R use:RPar'.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong (a b : PTm) : rtc RPar'.R a b -> rtc RPar'.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong p (a0 a1 : PTm) : rtc RPar'.R a0 a1 -> rtc RPar'.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming (a0 a1 : PTm) (ξ : nat -> nat) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar'.renaming, rtc_l. Qed. Lemma weakening (a0 a1 : PTm) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_PTm shift a0) (ren_PTm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv (a : PTm) b : rtc RPar'.R (PAbs a) b -> exists a', b = PAbs a' /\ rtc RPar'.R a a'. Proof. move E : (PAbs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar'.R, rtc. Qed. Lemma morphing (a b : PTm) (ρ : nat -> PTm) : rtc RPar'.R a b -> rtc RPar'.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar'.substing. Qed. Lemma substing (a b : PTm ) c : rtc RPar'.R a b -> rtc RPar'.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b). Proof. hauto lq:on use:morphing inv:nat. Qed. Lemma antirenaming (a : PTm) (b : PTm) (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> rtc RPar'.R (subst_PTm ρ a) b -> exists b0, rtc RPar'.R a b0 /\ subst_PTm ρ b0 = b. Proof. move E :(subst_PTm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar'.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars'. Lemma subst_id: forall d : PTm, subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) d = d. Proof. intros d. have h : d = subst_PTm VarPTm d by asimpl. rewrite {2}h. apply ext_PTm. destruct x => //=. Qed. Lemma Abs_EPar a (b : PTm) : EPar.R (PAbs a) b -> (exists d, EPar.R a d /\ rtc RPar.R (PApp (ren_PTm shift b) (VarPTm var_zero)) d) /\ (exists d, EPar.R a d /\ forall p, rtc RPar.R (PProj p b) (PAbs (PProj p d))). Proof. move E : (PAbs a) => u h. move : a E. elim : u b /h => //=. - move => a0 a1 ha iha b ?. subst. specialize iha with (1 := eq_refl). move : iha => [[d [ih0 ih1]] _]. split; exists d. + split => //. apply : rtc_l. apply RPar.AppAbs; eauto => //=. apply RPar.refl. by apply RPar.refl. move :ih1; substify; by asimpl. + split => // p. apply : rtc_l. apply : RPar.ProjAbs. by apply RPar.refl. eauto using RPars.ProjCong, RPars.AbsCong. - move => ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d [ih0 ih1]]]. split. + exists (PPair (PProj PL d) (PProj PR d)). split; first by apply EPar.PairEta. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. suff h : forall p, rtc RPar.R (PApp (PProj p (ren_PTm shift a1)) (VarPTm var_zero)) (PProj p d) by sfirstorder use:RPars.PairCong. move => p. move /(_ p) /RPars.weakening in ih1. apply relations.rtc_transitive with (y := PApp (ren_PTm shift (PAbs (PProj p d))) (VarPTm var_zero)). by eauto using RPars.AppCong, rtc_refl. apply relations.rtc_once => /=. apply : RPar.AppAbs'; eauto using RPar.refl. simpl. f_equal. asimpl. clear. by rewrite subst_id. + exists d. repeat split => //. move => p. apply : rtc_l; eauto. hauto q:on use:RPar.ProjPair', RPar.refl. - move => a0 a1 ha _ ? [*]. subst. split. + exists a1. split => //. apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl; rewrite subst_id. + exists a1. split => // p. apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl. Qed. Lemma Pair_EPar (a b c : PTm) : EPar.R (PPair a b) c -> (forall p, exists d, rtc RPar.R (PProj p c) d /\ EPar.R (if p is PL then a else b) d) /\ (exists d0 d1, rtc RPar.R (PApp (ren_PTm shift c) (VarPTm var_zero)) (PPair (PApp (ren_PTm shift d0) (VarPTm var_zero))(PApp (ren_PTm shift d1) (VarPTm var_zero))) /\ EPar.R a d0 /\ EPar.R b d1). Proof. move E : (PPair a b) => u h. move : a b E. elim : u c /h => //=. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. split. + move => p. exists (PAbs (PApp (ren_PTm shift (if p is PL then d0 else d1)) (VarPTm var_zero))). split. * apply : relations.rtc_transitive. ** apply RPars.ProjCong. apply RPars.AbsCong. eassumption. ** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. hauto l:on. * hauto lq:on use:EPar.AppEta'. + exists d0, d1. repeat split => //. apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=. by asimpl; renamify. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). split => [p|]. + move : iha => [/(_ p) [d [ih0 ih1]] _]. exists d. split=>//. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. set q := (X in rtc RPar.R X d). by have -> : q = PProj p a1 by hauto lq:on. + move :iha => [iha _]. move : (iha PL) => [d0 [ih0 ih0']]. move : (iha PR) => [d1 [ih1 ih1']] {iha}. exists d0, d1. apply RPars.weakening in ih0, ih1. repeat split => //=. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl. - move => a0 a1 b0 b1 ha _ hb _ a b [*]. subst. split. + move => p. exists (if p is PL then a1 else b1). split. * apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl. * hauto lq:on rew:off. + exists a1, b1. split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl. split => //. Qed. Lemma commutativity0 (a b0 b1 : PTm) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => h. move : b1. elim : a b0 / h. - move => a b0 ha iha b1 hb. move : iha (hb) => /[apply]. move => [c [ih0 ih1]]. exists (PAbs (PApp (ren_PTm shift c) (VarPTm var_zero))). split. + hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - move => a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0. move => [c [ih0 ih1]]. exists (PPair (PProj PL c) (PProj PR c)). split. + apply RPars.PairCong; by apply RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - hauto l:on ctrs:rtc inv:RPar.R. - move => a0 a1 h ih b1. elim /RPar.inv => //= _. move => a2 a3 ? [*]. subst. hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong. - move => a0 a1 b0 b1 ha iha hb ihb b2. elim /RPar.inv => //= _. + move => a2 a3 b3 b4 h0 h1 [*]. subst. move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]]. have {}/iha : RPar.R (PAbs a2) (PAbs a3) by hauto lq:on ctrs:RPar.R. move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]]. exists (subst_PTm (scons b VarPTm) d). split. (* By substitution *) * move /RPars.substing : ih2. move /(_ b). asimpl. eauto using relations.rtc_transitive, RPars.AppCong. (* By EPar morphing *) * by apply EPar.substing. + move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha => [c [ihc0 ihc1]]. move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]]. move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. move /RPars.substing : ih0. move /(_ d). asimpl => h. exists (PPair (PApp d0 d) (PApp d1 d)). split. hauto lq:on use:relations.rtc_transitive, RPars.AppCong. apply EPar.PairCong; by apply EPar.AppCong. + hauto lq:on ctrs:EPar.R use:RPars.AppCong. - hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong. - move => p a b0 h0 ih0 b1. elim /RPar.inv => //= _. + move => ? a0 a1 h [*]. subst. move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]]. move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]]. exists (PAbs (PProj p d)). qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive. + move => p0 a0 a1 b2 b3 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]]. move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _]. exists d. split => //. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. Qed. Lemma commutativity1 (a b0 b1 : PTm) : EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => + h. move : b0. elim : a b1 / h. - sfirstorder. - qauto l:on use:relations.rtc_transitive, commutativity0. Qed. Lemma commutativity (a b0 b1 : PTm) : rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. move => h. move : b1. elim : a b0 /h. - sfirstorder. - move => a0 a1 a2 + ha1 ih b1 +. move : commutativity1; repeat move/[apply]. hauto q:on ctrs:rtc. Qed. Lemma Abs_EPar' a (b : PTm) : EPar.R (PAbs a) b -> (exists d, EPar.R a d /\ rtc OExp.R (PAbs d) b). Proof. move E : (PAbs a) => u h. move : a E. elim : u b /h => //=. - move => a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Proj_EPar' p a (b : PTm) : EPar.R (PProj p a) b -> (exists d, EPar.R a d /\ rtc OExp.R (PProj p d) b). Proof. move E : (PProj p a) => u h. move : p a E. elim : u b /h => //=. - move => a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma App_EPar' (a b u : PTm) : EPar.R (PApp a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (PApp a0 b0) u). Proof. move E : (PApp a b) => t h. move : a b E. elim : t u /h => //=. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Pair_EPar' (a b u : PTm) : EPar.R (PPair a b) u -> exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (PPair a0 b0) u. Proof. move E : (PPair a b) => t h. move : a b E. elim : t u /h => //=. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Const_EPar' k (u : PTm) : EPar.R (PConst k) u -> rtc OExp.R (PConst k) u. move E : (PConst k) => t h. move : k E. elim : t u /h => //=. - move => a0 a1 h ih k ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 h ih k ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bot_EPar' (u : PTm) : EPar.R (PBot) u -> rtc OExp.R (PBot) u. move E : (PBot) => t h. move : E. elim : t u /h => //=. - move => a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Univ_EPar' i (u : PTm) : EPar.R (PUniv i) u -> rtc OExp.R (PUniv i) u. move E : (PUniv i) => t h. move : E. elim : t u /h => //=. - move => a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma EPar_diamond (c a1 b1 : PTm) : EPar.R c a1 -> EPar.R c b1 -> exists d2, EPar.R a1 d2 /\ EPar.R b1 d2. Proof. move => h. move : b1. elim : c a1 / h. - move => c a1 ha iha b1 /iha [d2 [hd0 hd1]]. exists(PAbs (PApp (ren_PTm shift d2) (VarPTm var_zero))). hauto lq:on ctrs:EPar.R use:EPar.renaming. - hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on use:EPar.refl. - move => a0 a1 ha iha a2. move /Abs_EPar' => [d [hd0 hd1]]. move : iha hd0; repeat move/[apply]. move => [d2 [h0 h1]]. have : EPar.R (PAbs d) (PAbs d2) by eauto using EPar.AbsCong. move : OExp.commutativity0 hd1; repeat move/[apply]. move => [d1 [hd1 hd2]]. exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge. - move => a0 a1 b0 b1 ha iha hb ihb c. move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (PApp a2 b2)(PApp a3 b3) by hauto l:on use:EPar.AppCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => a0 a1 b0 b1 ha iha hb ihb c. move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (PPair a2 b2)(PPair a3 b3) by hauto l:on use:EPar.PairCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => p a0 a1 ha iha b. move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}. have : EPar.R (PProj p d) (PProj p d2) by hauto l:on use:EPar.ProjCong. move : OExp.commutativity0 h1; repeat move/[apply]. move => [d1 h1]. exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - qauto use:Const_EPar', EPar.refl. - qauto use:Univ_EPar', EPar.refl. - qauto use:Bot_EPar', EPar.refl. Qed. Function tstar (a : PTm) := match a with | VarPTm i => a | PAbs a => PAbs (tstar a) | PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a) | PApp (PPair a b) c => PPair (PApp (tstar a) (tstar c)) (PApp (tstar b) (tstar c)) | PApp a b => PApp (tstar a) (tstar b) | PPair a b => PPair (tstar a) (tstar b) | PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b) | PProj p (PAbs a) => (PAbs (PProj p (tstar a))) | PProj p a => PProj p (tstar a) | PConst k => PConst k | PUniv i => PUniv i | PBot => PBot end. Lemma RPar_triangle (a : PTm) : forall b, RPar.R a b -> RPar.R b (tstar a). Proof. apply tstar_ind => {a}. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. Qed. Function tstar' (a : PTm) := match a with | VarPTm i => a | PAbs a => PAbs (tstar' a) | PApp (PAbs a) b => subst_PTm (scons (tstar' b) VarPTm) (tstar' a) | PApp a b => PApp (tstar' a) (tstar' b) | PPair a b => PPair (tstar' a) (tstar' b) | PProj p (PPair a b) => if p is PL then (tstar' a) else (tstar' b) | PProj p a => PProj p (tstar' a) | PConst k => PConst k | PUniv i => PUniv i | PBot => PBot end. Lemma RPar'_triangle (a : PTm) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). Proof. apply tstar'_ind => {a}. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. Qed. Lemma RPar_diamond (c a1 b1 : PTm) : RPar.R c a1 -> RPar.R c b1 -> exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. Proof. hauto l:on use:RPar_triangle. Qed. Lemma RPar'_diamond (c a1 b1 : PTm) : RPar'.R c a1 -> RPar'.R c b1 -> exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. Proof. hauto l:on use:RPar'_triangle. Qed. Lemma RPar_confluent (c a1 b1 : PTm) : rtc RPar.R c a1 -> rtc RPar.R c b1 -> exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, RPar_diamond. Qed. Lemma EPar_confluent (c a1 b1 : PTm) : rtc EPar.R c a1 -> rtc EPar.R c b1 -> exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, EPar_diamond. Qed. Inductive prov : PTm -> PTm -> Prop := | P_Abs h a : (forall b, prov h (subst_PTm (scons b VarPTm) a)) -> prov h (PAbs a) | P_App h a b : prov h a -> prov h (PApp a b) | P_Pair h a b : prov h a -> prov h b -> prov h (PPair a b) | P_Proj h p a : prov h a -> prov h (PProj p a) | P_Const k : prov (PConst k) (PConst k) | P_Var i : prov (VarPTm i) (VarPTm i) | P_Univ i : prov (PUniv i) (PUniv i) | P_Bot : prov PBot PBot. Lemma ERed_EPar (a b : PTm) : ERed.R a b -> EPar.R a b. Proof. induction 1; hauto lq:on ctrs:EPar.R use:EPar.refl. Qed. Lemma EPar_ERed (a b : PTm) : EPar.R a b -> rtc ERed.R a b. Proof. move => h. elim : a b /h. - eauto using rtc_r, ERed.AppEta. - eauto using rtc_r, ERed.PairEta. - auto using rtc_refl. - eauto using EReds.AbsCong. - eauto using EReds.AppCong. - eauto using EReds.PairCong. - eauto using EReds.ProjCong. - auto using rtc_refl. - auto using rtc_refl. - auto using rtc_refl. Qed. Lemma EPar_Par (a b : PTm) : EPar.R a b -> Par.R a b. Proof. move => h. elim : a b /h; qauto ctrs:Par.R. Qed. Lemma RPar_Par (a b : PTm) : RPar.R a b -> Par.R a b. Proof. move => h. elim : a b /h; hauto lq:on ctrs:Par.R. Qed. Lemma rtc_idem (R : PTm -> PTm -> Prop) (a b : PTm) : rtc (rtc R) a b -> rtc R a b. Proof. induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r. Qed. Lemma EPars_EReds (a b : PTm) : rtc EPar.R a b <-> rtc ERed.R a b. Proof. sfirstorder use:@relations.rtc_subrel, EPar_ERed, rtc_idem, ERed_EPar. Qed. Lemma prov_rpar (u : PTm) a b : prov u a -> RPar.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. (* - qauto l:on ctrs:prov inv:RPar.R use:@rtc_r, RPar_Par. *) - hauto lq:on ctrs:prov inv:RPar.R use:RPar.substing. - move => h a b ha iha b0. elim /RPar.inv => //= _. + move => a0 a1 b1 b2 h0 h1 [*]. subst. have {}iha : prov h (PAbs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov use:RPar.substing. + move => a0 a1 b1 b2 c0 c1. move => h0 h1 h2 [*]. subst. have {}iha : prov h (PPair a1 b2) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - move => h p a ha iha b. elim /RPar.inv => //= _. + move => p0 a0 a1 h0 [*]. subst. have {iha} : prov h (PAbs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on ctrs:prov inv:prov use:RPar.substing. + move => p0 a0 a1 b0 b1 h0 h1 [*]. subst. have {iha} : prov h (PPair a1 b1) by hauto lq:on ctrs:RPar.R. qauto l:on inv:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. Qed. Lemma prov_lam (u : PTm) a : prov u a <-> prov u (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))). Proof. split. move => h. constructor. move => b. asimpl. by constructor. inversion 1; subst. specialize H2 with (b := PBot). move : H2. asimpl. inversion 1; subst. done. Qed. Lemma prov_pair (u : PTm) a : prov u a <-> prov u (PPair (PProj PL a) (PProj PR a)). Proof. hauto lq:on inv:prov ctrs:prov. Qed. Lemma prov_ered (u : PTm) a b : prov u a -> ERed.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. - move => h a ha iha b. elim /ERed.inv => // _. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov use:ERed.substing. - hauto lq:on inv:ERed.R, prov ctrs:prov. - move => h a b ha iha hb ihb b0. elim /ERed.inv => //_. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. Qed. Lemma prov_ereds (u : PTm) a b : prov u a -> rtc ERed.R a b -> prov u b. Proof. induction 2; sfirstorder use:prov_ered. Qed. Fixpoint extract (a : PTm) : PTm := match a with | PAbs a => subst_PTm (scons PBot VarPTm) (extract a) | PApp a b => extract a | PPair a b => extract a | PProj p a => extract a | PConst k => PConst k | VarPTm i => VarPTm i | PUniv i => PUniv i | PBot => PBot end. Lemma ren_extract (a : PTm) (ξ : nat -> nat) : extract (ren_PTm ξ a) = ren_PTm ξ (extract a). Proof. move : ξ. elim : a. - sfirstorder. - move => a ih ξ /=. rewrite ih. by asimpl. - hauto q:on. - hauto q:on. - hauto q:on. - hauto q:on. - sfirstorder. - sfirstorder. Qed. Lemma ren_morphing (a : PTm) (ρ : nat -> PTm) : (forall i, ρ i = extract (ρ i)) -> extract (subst_PTm ρ a) = subst_PTm ρ (extract a). Proof. move : ρ. elim : a => //=. move => a ha ρ hi. rewrite ha. - destruct i as [|i] => //. rewrite ren_extract. rewrite -hi. by asimpl. - by asimpl. Qed. Lemma ren_subst_bot (a : PTm) : extract (subst_PTm (scons PBot VarPTm) a) = subst_PTm (scons PBot VarPTm) (extract a). Proof. apply ren_morphing. destruct i => //=. Qed. Definition prov_extract_spec u (a : PTm) := match u with | PUniv i => extract a = PUniv i | VarPTm i => extract a = VarPTm i | (PConst i) => extract a = (PConst i) | PBot => extract a = PBot | _ => True end. Lemma prov_extract u (a : PTm) : prov u a -> prov_extract_spec u a. Proof. move => h. elim : u a /h. - move => h a ha ih. case : h ha ih => //=. + move => i ha ih. move /(_ PBot) in ih. rewrite -ih. by rewrite ren_subst_bot. + move => p _ /(_ PBot). by rewrite ren_subst_bot. + move => i h /(_ PBot). by rewrite ren_subst_bot => ->. + move /(_ PBot). move => h /(_ PBot). by rewrite ren_subst_bot. - hauto lq:on. - hauto lq:on. - hauto lq:on. - case => //=. - sfirstorder. - sfirstorder. - sfirstorder. Qed. Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b := R0 a b \/ R1 a b. Module ERPar. Definition R (a b : PTm) := union RPar.R EPar.R a b. Lemma RPar (a b : PTm) : RPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma EPar (a b : PTm) : EPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma refl ( a : PTm) : ERPar.R a a. Proof. sfirstorder use:RPar.refl, EPar.refl. Qed. Lemma ProjCong p (a0 a1 : PTm) : R a0 a1 -> rtc R (PProj p a0) (PProj p a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.ProjCong. - move => h. apply rtc_once. right. by apply EPar.ProjCong. Qed. Lemma AbsCong (a0 a1 : PTm) : R a0 a1 -> rtc R (PAbs a0) (PAbs a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.AbsCong. - move => h. apply rtc_once. right. by apply EPar.AbsCong. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : R a0 a1 -> R b0 b1 -> rtc R (PApp a0 b0) (PApp a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.AppCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - sfirstorder use:EPar.AppCong, @rtc_once. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : R a0 a1 -> R b0 b1 -> rtc R (PPair a0 b0) (PPair a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.PairCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - sfirstorder use:EPar.PairCong, @rtc_once. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. sfirstorder use:EPar.renaming, RPar.renaming. Qed. End ERPar. Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong : erpar. Module ERPars. #[local]Ltac solve_s_rec := move => *; eapply relations.rtc_transitive; eauto; hauto lq:on db:erpar. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AppCong (a0 a1 b0 b1 : PTm) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma AbsCong (a0 a1 : PTm) : rtc ERPar.R a0 a1 -> rtc ERPar.R (PAbs a0) (PAbs a1). Proof. solve_s. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong p (a0 a1 : PTm) : rtc ERPar.R a0 a1 -> rtc ERPar.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming (a0 a1 : PTm) (ξ : nat -> nat) : rtc ERPar.R a0 a1 -> rtc ERPar.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using ERPar.renaming, rtc_l. Qed. End ERPars. Lemma ERPar_Par (a b : PTm) : ERPar.R a b -> Par.R a b. Proof. sfirstorder use:EPar_Par, RPar_Par. Qed. Lemma Par_ERPar (a b : PTm) : Par.R a b -> rtc ERPar.R a b. Proof. move => h. elim : a b /h. - move => a0 a1 b0 b1 ha iha hb ihb. suff ? : rtc ERPar.R (PApp (PAbs a0) b0) (PApp (PAbs a1) b1). apply : relations.rtc_transitive; eauto. apply rtc_once. apply ERPar.RPar. by apply RPar.AppAbs; eauto using RPar.refl. eauto using ERPars.AppCong,ERPars.AbsCong. - move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc. apply : rtc_l. apply ERPar.RPar. apply RPar.AppPair; eauto using RPar.refl. sfirstorder use:ERPars.AppCong, ERPars.PairCong. - move => p a0 a1 ha iha. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl. sfirstorder use:ERPars.AbsCong, ERPars.ProjCong. - move => p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjPair; eauto using RPar.refl. hauto lq:on. - move => a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.AppEta; eauto using EPar.refl. hauto lq:on ctrs:rtc use:ERPars.AppCong, ERPars.AbsCong, ERPars.renaming. - move => a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl. sfirstorder use:ERPars.PairCong, ERPars.ProjCong. - sfirstorder. - sfirstorder use:ERPars.AbsCong. - sfirstorder use:ERPars.AppCong. - sfirstorder use:ERPars.PairCong. - sfirstorder use:ERPars.ProjCong. - sfirstorder. - sfirstorder. - sfirstorder. Qed. Lemma Pars_ERPar (a b : PTm) : rtc Par.R a b -> rtc ERPar.R a b. Proof. induction 1; hauto l:on use:Par_ERPar, @relations.rtc_transitive. Qed. Lemma Par_ERPar_iff (a b : PTm) : rtc Par.R a b <-> rtc ERPar.R a b. Proof. split. sfirstorder use:Pars_ERPar, @relations.rtc_subrel. sfirstorder use:ERPar_Par, @relations.rtc_subrel. Qed. Lemma RPar_ERPar (a b : PTm) : rtc RPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Lemma EPar_ERPar (a b : PTm) : rtc EPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Module Type HindleyRosen. Parameter A : Type. Parameter R0 R1 : A -> A -> Prop. Axiom diamond_R0 : relations.diamond R0. Axiom diamond_R1 : relations.diamond R1. Axiom commutativity : forall a b c, R0 a b -> R1 a c -> exists d, R1 b d /\ R0 c d. End HindleyRosen. Module HindleyRosenFacts (M : HindleyRosen). Import M. Lemma R0_comm : forall a b c, R0 a b -> rtc (union R0 R1) a c -> exists d, rtc (union R0 R1) b d /\ R0 c d. Proof. move => a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : diamond_R0 h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma R1_comm : forall a b c, R1 a b -> rtc (union (R0) (R1)) a c -> exists d, rtc (union (R0) (R1)) b d /\ R1 c d. Proof. move => a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : diamond_R1 h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma U_comm : forall a b c, (union R0 R1) a b -> rtc (union R0 R1) a c -> exists d, rtc (union R0 R1) b d /\ (union R0 R1) c d. Proof. hauto lq:on use:R0_comm, R1_comm. Qed. Lemma U_comms : forall a b c, rtc (union R0 R1) a b -> rtc (union R0 R1) a c -> exists d, rtc (union R0 R1) b d /\ rtc (union R0 R1) c d. Proof. move => a b + h. elim : a b /h. - sfirstorder. - hecrush ctrs:rtc use:U_comm. Qed. End HindleyRosenFacts. Module HindleyRosenER <: HindleyRosen. Definition A := PTm. Definition R0 := rtc (@RPar.R ). Definition R1 := rtc (@EPar.R ). Lemma diamond_R0 : relations.diamond (R0). sfirstorder use:RPar_confluent. Qed. Lemma diamond_R1 : relations.diamond (R1). sfirstorder use:EPar_confluent. Qed. Lemma commutativity : forall a b c, R0 a b -> R1 a c -> exists d, R1 b d /\ R0 c d. Proof. hauto l:on use:commutativity. Qed. End HindleyRosenER. Module ERFacts := HindleyRosenFacts HindleyRosenER. Lemma rtc_union (a b : PTm) : rtc (union RPar.R EPar.R) a b <-> rtc (union (rtc RPar.R) (rtc EPar.R)) a b. Proof. split; first by induction 1; hauto lq:on ctrs:rtc. move => h. elim :a b /h. - sfirstorder. - move => a0 a1 a2. case. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. Qed. Lemma prov_erpar (u : PTm) a b : prov u a -> ERPar.R a b -> prov u b. Proof. move => h []. - sfirstorder use:prov_rpar. - move /EPar_ERed. sfirstorder use:prov_ereds. Qed. Lemma prov_pars (u : PTm) a b : prov u a -> rtc Par.R a b -> prov u b. Proof. move => h /Pars_ERPar. move => h0. move : h. elim : a b /h0. - done. - hauto lq:on use:prov_erpar. Qed. Lemma Par_confluent (a b c : PTm) : rtc Par.R a b -> rtc Par.R a c -> exists d, rtc Par.R b d /\ rtc Par.R c d. Proof. move : a b c. suff : forall (a b c : PTm), rtc ERPar.R a b -> rtc ERPar.R a c -> exists d : PTm, rtc ERPar.R b d /\ rtc ERPar.R c d. move => h a b c h0 h1. apply Par_ERPar_iff in h0, h1. move : h h0 h1; repeat move/[apply]. hauto lq:on use:Par_ERPar_iff. have h := ERFacts.U_comms. move => a b c. rewrite /HindleyRosenER.R0 /HindleyRosenER.R1 in h. rewrite /HindleyRosenER.A in h. rewrite /ERPar.R. have eq : (fun a0 b0 : PTm => union RPar.R EPar.R a0 b0) = union RPar.R EPar.R by reflexivity. rewrite !{}eq. move /rtc_union => + /rtc_union. move : h; repeat move/[apply]. hauto lq:on use:rtc_union. Qed. Lemma pars_univ_inv i (c : PTm) : rtc Par.R (PUniv i) c -> extract c = PUniv i. Proof. have : prov (PUniv i) (PUniv i : PTm) by sfirstorder. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_const_inv i (c : PTm) : rtc Par.R (PConst i) c -> extract c = PConst i. Proof. have : prov (PConst i) (PConst i : PTm) by sfirstorder. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_var_inv (i : nat) C : rtc Par.R (VarPTm i) C -> extract C = VarPTm i. Proof. have : prov (VarPTm i) (VarPTm i) by hauto lq:on ctrs:prov, rtc. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_univ_inj i j (C : PTm) : rtc Par.R (PUniv i) C -> rtc Par.R (PUniv j) C -> i = j. Proof. sauto l:on use:pars_univ_inv. Qed. Lemma pars_const_inj i j (C : PTm) : rtc Par.R (PConst i) C -> rtc Par.R (PConst j) C -> i = j. Proof. sauto l:on use:pars_const_inv. Qed. Definition join (a b : PTm) := exists c, rtc Par.R a c /\ rtc Par.R b c. Lemma join_transitive (a b c : PTm) : join a b -> join b c -> join a c. Proof. rewrite /join. move => [ab [h0 h1]] [bc [h2 h3]]. move : Par_confluent h1 h2; repeat move/[apply]. move => [abc [h4 h5]]. eauto using relations.rtc_transitive. Qed. Lemma join_symmetric (a b : PTm) : join a b -> join b a. Proof. sfirstorder unfold:join. Qed. Lemma join_refl (a : PTm) : join a a. Proof. hauto lq:on ctrs:rtc unfold:join. Qed. Lemma join_univ_inj i j : join (PUniv i : PTm) (PUniv j) -> i = j. Proof. sfirstorder use:pars_univ_inj. Qed. Lemma join_const_inj i j : join (PConst i : PTm) (PConst j) -> i = j. Proof. sfirstorder use:pars_const_inj. Qed. Lemma join_substing (a b : PTm) (ρ : nat -> PTm) : join a b -> join (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto lq:on unfold:join use:Pars.substing. Qed. Fixpoint ne (a : PTm) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => false | PUniv _ => false | PProj _ a => ne a | PPair _ _ => false | PConst _ => false | PBot => true end with nf (a : PTm) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => nf a | PUniv _ => true | PProj _ a => ne a | PPair a b => nf a && nf b | PConst _ => true | PBot => true end. Lemma ne_nf a : ne a -> nf a. Proof. elim : a => //=. Qed. Definition wn (a : PTm) := exists b, rtc RPar'.R a b /\ nf b. Definition wne (a : PTm) := exists b, rtc RPar'.R a b /\ ne b. (* Weakly neutral implies weakly normal *) Lemma wne_wn a : @wne a -> wn a. Proof. sfirstorder use:ne_nf. Qed. (* Normal implies weakly normal *) Lemma nf_wn v : @nf v -> wn v. Proof. sfirstorder ctrs:rtc. Qed. Lemma nf_refl (a b : PTm) (h : RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Proof. elim : a b /h => //=; solve [hauto b:on]. Qed. Lemma ne_nf_ren (a : PTm) (ξ : nat -> nat) : (ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)). Proof. move : ξ. elim : a => //=; solve [hauto b:on]. Qed. Lemma wne_app (a b : PTm) : wne a -> wn b -> wne (PApp a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (PApp a0 b0). hauto b:on drew:off use:RPars'.AppCong. Qed. Lemma wn_abs a (h : wn a) : @wn (PAbs a). Proof. move : h => [v [? ?]]. exists (PAbs v). eauto using RPars'.AbsCong. Qed. Lemma wn_pair (a b : PTm) : wn a -> wn b -> wn (PPair a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (PPair a0 b0). hauto lqb:on use:RPars'.PairCong. Qed. Lemma wne_proj p (a : PTm) : wne a -> wne (PProj p a). Proof. move => [a0 [? ?]]. exists (PProj p a0). hauto lqb:on use:RPars'.ProjCong. Qed. Create HintDb nfne. #[export]Hint Resolve nf_wn ne_nf wne_wn nf_refl : nfne. Lemma ne_nf_antiren (a : PTm) (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> (ne (subst_PTm ρ a) -> ne a) /\ (nf (subst_PTm ρ a) -> nf a). Proof. move : ρ. elim : a => //; hauto b:on drew:off use:RPar.var_or_const_up. Qed. Lemma wn_antirenaming a (ρ : nat -> PTm) : (forall i, var_or_const (ρ i)) -> wn (subst_PTm ρ a) -> wn a. Proof. rewrite /wn => hρ. move => [v [rv nfv]]. move /RPars'.antirenaming : rv. move /(_ hρ) => [b [hb ?]]. subst. exists b. split => //=. move : nfv. by eapply ne_nf_antiren. Qed. Lemma ext_wn (a : PTm) : wn (PApp a PBot) -> wn a. Proof. move E : (PApp a (PBot)) => a0 [v [hr hv]]. move : a E. move : hv. elim : a0 v / hr. - hauto q:on inv:PTm ctrs:rtc b:on db: nfne. - move => a0 a1 a2 hr0 hr1 ih hnfa2. move /(_ hnfa2) in ih. move => a. case : a0 hr0=>// => b0 b1. elim /RPar'.inv=>// _. + move => a0 a3 b2 b3 ? ? [? ?] ? [? ?]. subst. have ? : b3 = (PBot) by hauto lq:on inv:RPar'.R. subst. suff : wn (PAbs a3) by hauto lq:on ctrs:RPar'.R, rtc unfold:wn. have : wn (subst_PTm (scons (PBot) VarPTm) a3) by sfirstorder. move => h. apply wn_abs. move : h. apply wn_antirenaming. hauto lq:on rew:off inv:nat. + hauto q:on inv:RPar'.R ctrs:rtc b:on. Qed. Module Join. Lemma ProjCong p (a0 a1 : PTm) : join a0 a1 -> join (PProj p a0) (PProj p a1). Proof. hauto lq:on use:Pars.ProjCong unfold:join. Qed. Lemma PairCong (a0 a1 b0 b1 : PTm) : join a0 a1 -> join b0 b1 -> join (PPair a0 b0) (PPair a1 b1). Proof. hauto lq:on use:Pars.PairCong unfold:join. Qed. Lemma AppCong (a0 a1 b0 b1 : PTm) : join a0 a1 -> join b0 b1 -> join (PApp a0 b0) (PApp a1 b1). Proof. hauto lq:on use:Pars.AppCong. Qed. Lemma AbsCong (a b : PTm) : join a b -> join (PAbs a) (PAbs b). Proof. hauto lq:on use:Pars.AbsCong. Qed. Lemma renaming (a b : PTm) (ξ : nat -> nat) : join a b -> join (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto lq:on use:Pars.renaming. Qed. Lemma weakening (a b : PTm) : join a b -> join (ren_PTm shift a) (ren_PTm shift b). Proof. apply renaming. Qed. Lemma FromPar (a b : PTm) : Par.R a b -> join a b. Proof. hauto lq:on ctrs:rtc use:rtc_once. Qed. End Join. Lemma abs_eq a (b : PTm) : join (PAbs a) b <-> join a (PApp (ren_PTm shift b) (VarPTm var_zero)). Proof. split. - move => /Join.weakening h. have {h} : join (PApp (ren_PTm shift (PAbs a)) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)) by hauto l:on use:Join.AppCong, join_refl. simpl. move => ?. apply : join_transitive; eauto. apply join_symmetric. apply Join.FromPar. apply : Par.AppAbs'; eauto using Par.refl. by asimpl; rewrite subst_id. - move /Join.AbsCong. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. apply Par.AppEta. apply Par.refl. Qed. Lemma pair_eq (a0 a1 b : PTm) : join (PPair a0 a1) b <-> join a0 (PProj PL b) /\ join a1 (PProj PR b). Proof. split. - move => h. have /Join.ProjCong {}h := h. have h0 : forall p, join (if p is PL then a0 else a1) (PProj p (PPair a0 a1)) by hauto lq:on use:join_symmetric, Join.FromPar, Par.ProjPair', Par.refl. hauto lq:on rew:off use:join_transitive, join_symmetric. - move => [h0 h1]. move : h0 h1. move : Join.PairCong; repeat move/[apply]. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. hauto lq:on ctrs:Par.R use:Par.refl. Qed. Lemma join_pair_inj (a0 a1 b0 b1 : PTm) : join (PPair a0 a1) (PPair b0 b1) <-> join a0 b0 /\ join a1 b1. Proof. split; last by hauto lq:on use:Join.PairCong. move /pair_eq => [h0 h1]. have : join (PProj PL (PPair b0 b1)) b0 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. have : join (PProj PR (PPair b0 b1)) b1 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. eauto using join_transitive. Qed.