Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import fp_red. From Hammer Require Import Tactics. From Equations Require Import Equations. Require Import ssreflect ssrbool. Require Import Logic.PropExtensionality (propositional_extensionality). From stdpp Require Import relations (rtc(..), rtc_subrel). Import Psatz. Definition ProdSpace {n} (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop := forall a PB, PA a -> PF a PB -> PB (App b a). Definition SumSpace {n} (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop := exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b). Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace. Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop := | InterpExt_Ne A : ne A -> ⟦ A ⟧ i ;; I ↘ wne | InterpExt_Bind p A B PA PF : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ BindSpace p PA PF | InterpExt_Univ j : j < i -> ⟦ Univ j ⟧ i ;; I ↘ (I j) | InterpExt_Step A A0 PA : RPar'.R A A0 -> ⟦ A0 ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PA where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) : PF = I j -> j < i -> ⟦ Univ j ⟧ i ;; I ↘ PF. Proof. hauto lq:on ctrs:InterpExt. Qed. Infix " (Tm n -> Prop) -> Prop by wf i lt := InterpUnivN n i := @InterpExt n i (fun j A => match j exists PA, InterpUnivN n j A PA | right _ => False end). Arguments InterpUnivN {n}. Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI h. elim : A PA /h. - hauto q:on ctrs:InterpExt. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA = ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI. apply propositional_extensionality. have : forall j, j < i -> I' j = I j by sfirstorder. firstorder using InterpExt_lt_impl. Qed. Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). Lemma InterpUnivN_nolt n i : @InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUnivN. extensionality A. extensionality PA. set I0 := (fun _ => _). set I1 := (fun _ => _). apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n): RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed. Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P (h : ⟦ TBind p A B ⟧ i ;; I ↘ P) : exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = BindSpace p PA PF. Proof. move E : (TBind p A B) h => T h. move : A B E. elim : T P / h => //. - move => //= *. scongruence. - hauto l:on. - move => A A0 PA hA hA0 hPi A1 B ?. subst. elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst. hauto lq:on ctrs:InterpExt use:RPar_substone. Qed. Lemma InterpExt_Ne_inv n i A I P (h : ⟦ A : Tm n ⟧ i ;; I ↘ P) : ne A -> P = wne. Proof. elim : A P / h => //=. qauto l:on ctrs:prov inv:prov use:nf_refl. Qed. Lemma InterpExt_Univ_inv n i I j P (h : ⟦ Univ j : Tm n ⟧ i ;; I ↘ P) : P = I j /\ j < i. Proof. move : h. move E : (Univ j) => T h. move : j E. elim : T P /h => //. - move => //= *. scongruence. - hauto l:on. - hauto lq:on rew:off inv:RPar'.R. Qed. Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)). Proof. move => h0 h1. apply InterpExt_Bind =>//. Qed. Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) -> ⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)). Proof. hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_cumulative n i j I (A : Tm n) PA : i <= j -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ j ;; I ↘ PA. Proof. move => h h0. elim : A PA /h0; hauto l:on ctrs:InterpExt solve+:(by lia). Qed. Lemma InterpUnivN_cumulative n i (A : Tm n) PA : ⟦ A ⟧ i ↘ PA -> forall j, i <= j -> ⟦ A ⟧ j ↘ PA. Proof. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. Qed. Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) : RPar'.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. move : B. elim : A P / h; auto. - hauto lq:on use:nf_refl ctrs:InterpExt. - move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT. elim /RPar'.inv : hT => //. move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst. apply InterpExt_Bind; auto => a PB hPB0. apply : ihPB; eauto. sfirstorder use:RPar'.cong, RPar'.refl. - hauto lq:on inv:RPar'.R ctrs:InterpExt. - move => A B P h0 h1 ih1 C hC. have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC. hauto lq:on ctrs:InterpExt. Qed. Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : RPar'.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed. Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) : rtc RPar'.R A B -> ⟦ A ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on ctrs:InterpExt. Qed. Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) : rtc RPar'.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed. Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : rtc RPar'.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed. Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) : rtc RPar'.R A B -> ⟦ A ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed. Function hfb {n} (A : Tm n) := match A with | TBind _ _ _ => true | Univ _ => true | _ => ne A end. Inductive hfb_case {n} : Tm n -> Prop := | hfb_bind p A B : hfb_case (TBind p A B) | hfb_univ i : hfb_case (Univ i) | hfb_ne A : ne A -> hfb_case A. Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop. Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A. Proof. case : A => //=. Qed. Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A. Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed. Lemma InterpExtInv n i I (A : Tm n) PA : ⟦ A ⟧ i ;; I ↘ PA -> exists B, hfb B /\ rtc RPar'.R A B /\ ⟦ B ⟧ i ;; I ↘ PA. Proof. move => h. elim : A PA /h. - hauto q:on ctrs:InterpExt, rtc use:ne_hfb. - move => p A B PA PF hPA _ hPF hPF0 _. exists (TBind p A B). repeat split => //=. apply rtc_refl. hauto l:on ctrs:InterpExt. - move => j ?. exists (Univ j). hauto l:on ctrs:InterpExt. - hauto lq:on ctrs:rtc. Qed. Lemma RPar'_Par n (A B : Tm n) : RPar'.R A B -> Par.R A B. Proof. induction 1; hauto lq:on ctrs:Par.R. Qed. Lemma RPar's_Pars n (A B : Tm n) : rtc RPar'.R A B -> rtc Par.R A B. Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed. Lemma RPar's_join n (A B : Tm n) : rtc RPar'.R A B -> join A B. Proof. hauto lq:on ctrs:rtc use:RPar's_Pars. Qed. Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b : (forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) -> (forall a, PA a -> exists PB, PF a PB) -> (forall a, PA a -> exists PB0, PF0 a PB0) -> (BindSpace p PA PF b <-> BindSpace p PA PF0 b). Proof. rewrite /BindSpace => h hPF hPF0. case : p => /=. - rewrite /ProdSpace. split. move => h1 a PB ha hPF'. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. move => ? a PB ha. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. - rewrite /SumSpace. hauto lq:on rew:off. Qed. Lemma ne_prov_inv n (a : Tm n) : ne a -> exists i, prov (VarTm i) a /\ extract a = VarTm i. Proof. elim : n /a => //=. - hauto lq:on ctrs:prov. - hauto lq:on rew:off ctrs:prov b:on. - hauto lq:on ctrs:prov. Qed. Lemma join_bind_ne_contra n p (A : Tm n) B C : ne C -> join (TBind p A B) C -> False. Proof. move => hC [D [h0 h1]]. move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]]. have [i] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv. move => h. have {}h : prov (VarTm i) D by eauto using prov_pars. have : extract D = VarTm i by sfirstorder use:prov_extract. congruence. Qed. Lemma join_univ_ne_contra n i C : ne C -> join (Univ i : Tm n) C -> False. Proof. move => hC [D [h0 h1]]. move /pars_univ_inv : h0 => ?. have [j] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv. move => h. have {}h : prov (VarTm j) D by eauto using prov_pars. have : extract D = VarTm j by sfirstorder use:prov_extract. congruence. Qed. #[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join. Lemma InterpExt_Join n i I (A B : Tm n) PA PB : ⟦ A ⟧ i ;; I ↘ PA -> ⟦ B ⟧ i ;; I ↘ PB -> join A B -> PA = PB. Proof. move => h. move : B PB. elim : A PA /h. - move => A hA B PB /InterpExtInv. move => [B0 []]. move /hfb_caseP. elim/hfb_inv => _. + move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso. eauto with join. + move => ? ? [/RPar's_join *]. subst. exfalso. eauto with join. + hauto lq:on use:InterpExt_Ne_inv. - move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv. move => [B0 []]. move /hfb_caseP. elim /hfb_inv => _. rename B0 into B00. + move => p0 A0 B0 ? [hr hPi]. subst. move /InterpExt_Bind_inv : hPi. move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst. move => hjoin. have{}hr : join U (TBind p0 A0 B0) by auto using RPar's_join. have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive. have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj. move => [? [h0 h1]]. subst. have ? : PA0 = PA by hauto l:on. subst. rewrite /ProdSpace. extensionality b. apply propositional_extensionality. apply bindspace_iff; eauto. move => a PB PB0 hPB hPB0. apply : ihPF; eauto. by apply join_substing. + move => j ?. subst. move => [h0 h1] h. have ? : join U (Univ j) by eauto using RPar's_join. have : join (TBind p A B) (Univ j) by eauto using join_transitive. move => ?. exfalso. eauto using join_univ_pi_contra. + move => A0 ? ? [/RPar's_join ?]. subst. move => _ ?. exfalso. eauto with join. - move => j ? B PB /InterpExtInv. move => [? []]. move/hfb_caseP. elim /hfb_inv => //= _. + move => p A0 B0 _ []. move /RPar's_join => *. exfalso. eauto with join. + move => m _ [/RPar's_join h0 + h1]. have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive. subst. move /InterpExt_Univ_inv. firstorder. + move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join. - move => A A0 PA h. have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar'_Par, relations.rtc_once. eauto using join_transitive. Qed. Lemma InterpUniv_Join n i (A B : Tm n) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ i ↘ PB -> join A B -> PA = PB. Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed. Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P (h : ⟦ TBind p A B ⟧ i ↘ P) : exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop), ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\ P = BindSpace p PA PF. Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed. Lemma InterpUniv_Univ_inv n i j P (h : ⟦ Univ j ⟧ i ↘ P) : P = (fun (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i. Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed. Lemma InterpExt_Functional n i I (A B : Tm n) PA PB : ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PB -> PA = PB. Proof. hauto use:InterpExt_Join, join_refl. Qed. Lemma InterpUniv_Functional n i (A : Tm n) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ A ⟧ i ↘ PB -> PA = PB. Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed. Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ j ↘ PB -> join A B -> PA = PB. Proof. have [? ?] : i <= max i j /\ j <= max i j by lia. move => hPA hPB. have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUnivN_cumulative. have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUnivN_cumulative. eauto using InterpUniv_Join. Qed. Lemma InterpUniv_Functional' n i j A PA PB : ⟦ A : Tm n ⟧ i ↘ PA -> ⟦ A ⟧ j ↘ PB -> PA = PB. Proof. hauto l:on use:InterpUniv_Join', join_refl. Qed. Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) : exists (PA : Tm n -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB). Proof. move /InterpExt_Bind_inv : h. intros (PA & PF & hPA & hPF & hPF' & ?); subst. exists PA. repeat split => //. - sfirstorder. - extensionality b. case : p => /=. + extensionality a. extensionality PB. extensionality ha. apply propositional_extensionality. split. * hecrush use:InterpExt_Functional. * sfirstorder. + rewrite /SumSpace. apply propositional_extensionality. split; hauto q:on use:InterpExt_Functional. Qed. Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) : exists (PA : Tm n -> Prop), ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\ P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB). Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_back_clos n i I (A : Tm n) PA : (forall j, forall a b, (RPar'.R a b) -> I j b -> I j a) -> ⟦ A ⟧ i ;; I ↘ PA -> forall a b, (RPar'.R a b) -> PA b -> PA a. Proof. move => hI h. elim : A PA /h. - hauto q:on ctrs:rtc unfold:wne. - move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr. case : p => //=. + have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a) by hauto lq:on ctrs:RPar'.R use:RPar'.refl. hauto lq:on rew:off unfold:ProdSpace. + hauto lq:on ctrs:rtc unfold:SumSpace. - eauto. - eauto. Qed. Lemma InterpUniv_back_clos n i (A : Tm n) PA : ⟦ A ⟧ i ↘ PA -> forall a b, (RPar'.R a b) -> PA b -> PA a. Proof. simp InterpUniv. apply InterpExt_back_clos. hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star. Qed. Lemma InterpUniv_back_clos_star n i (A : Tm n) PA : ⟦ A ⟧ i ↘ PA -> forall a b, rtc RPar'.R a b -> PA b -> PA a. Proof. move => h a b. induction 1=> //. hauto lq:on use:InterpUniv_back_clos. Qed. Definition ρ_ok {n} (Γ : fin n -> Tm n) m (ρ : fin n -> Tm m) := forall i k PA, ⟦ subst_Tm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i). Definition SemWt {n} Γ (a A : Tm n) := forall m ρ, ρ_ok Γ m ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a). Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70). (* Semantic context wellformedness *) Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j. Notation "⊨ Γ" := (SemWff Γ) (at level 70). Lemma ρ_ok_id n (Γ : fin n -> Tm n) : ρ_ok Γ n VarTm. Proof. rewrite /ρ_ok. inversion i; subst. Qed. Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A : ⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a -> ρ_ok Γ ρ -> ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ). Proof. move => h0 h1 h2. rewrite /ρ_ok. move => j. destruct j as [j|]. - move => m PA0. asimpl => ?. asimpl. firstorder. - move => m PA0. asimpl => h3. have ? : PA0 = PA by eauto using InterpUniv_Functional'. by subst. Qed. Definition renaming_ok {n m} (Γ : fin n -> Tm n) (Δ : fin m -> Tm m) (ξ : fin m -> fin n) := forall (i : fin m), ren_Tm ξ (Δ i) = Γ (ξ i). Lemma ρ_ok_renaming n m (Γ : fin n -> Tm n) ρ : forall (Δ : fin m -> Tm m) ξ, renaming_ok Γ Δ ξ -> ρ_ok Γ ρ -> ρ_ok Δ (funcomp ρ ξ). Proof. move => Δ ξ hξ hρ. rewrite /ρ_ok => i m' PA. rewrite /renaming_ok in hξ. rewrite /ρ_ok in hρ. move => h. rewrite /funcomp. apply hρ with (m := m'). move : h. rewrite -hξ. by asimpl. Qed. Lemma renaming_SemWt {n} Γ a A : Γ ⊨ a ∈ A -> forall {m} Δ (ξ : fin n -> fin m), renaming_ok Δ Γ ξ -> Δ ⊨ ren_Tm ξ a ∈ ren_Tm ξ A. Proof. rewrite /SemWt => h m Δ ξ hξ ρ hρ. have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming. hauto q:on solve+:(by asimpl). Qed. Lemma weakening_Sem n Γ (a : Tm n) A B i (h0 : Γ ⊨ B ∈ Univ i) (h1 : Γ ⊨ a ∈ A) : funcomp (ren_Tm shift) (scons B Γ) ⊨ ren_Tm shift a ∈ ren_Tm shift A. Proof. apply : renaming_SemWt; eauto. hauto lq:on inv:option unfold:renaming_ok. Qed. Lemma SemWt_Univ n Γ (A : Tm n) i : Γ ⊨ A ∈ Univ i <-> forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_Tm ρ A ⟧ i ↘ S. Proof. rewrite /SemWt. split. - hauto lq:on rew:off use:InterpUniv_Univ_inv. - move => /[swap] ρ /[apply]. move => [PA hPA]. exists (S i). eexists. split. + simp InterpUniv. apply InterpExt_Univ. lia. + simpl. eauto. Qed. (* Structural laws for Semantic context wellformedness *) Lemma SemWff_nil : SemWff null. Proof. case. Qed. Lemma SemWff_cons n Γ (A : Tm n) i : ⊨ Γ -> Γ ⊨ A ∈ Univ i -> (* -------------- *) ⊨ funcomp (ren_Tm shift) (scons A Γ). Proof. move => h h0. move => j. destruct j as [j|]. - move /(_ j) : h => [k hk]. exists k. change (Univ k) with (ren_Tm shift (Univ k : Tm n)). eauto using weakening_Sem. - hauto q:on use:weakening_Sem. Qed. (* Semantic typing rules *) Lemma ST_Var n Γ (i : fin n) : ⊨ Γ -> Γ ⊨ VarTm i ∈ Γ i. Proof. move /(_ i) => [j /SemWt_Univ h]. rewrite /SemWt => ρ /[dup] hρ {}/h [S hS]. exists j, S. asimpl. firstorder. Qed. Lemma ST_Bind n Γ i j p (A : Tm n) (B : Tm (S n)) : Γ ⊨ A ∈ Univ i -> funcomp (ren_Tm shift) (scons A Γ) ⊨ B ∈ Univ j -> Γ ⊨ TBind p A B ∈ Univ (max i j). Proof. move => /SemWt_Univ h0 /SemWt_Univ h1. apply SemWt_Univ => ρ hρ. move /h0 : (hρ){h0} => [S hS]. eexists => /=. have ? : i <= Nat.max i j by lia. apply InterpUnivN_Fun_nopf. - eauto using InterpUnivN_cumulative. - move => *. asimpl. hauto l:on use:InterpUnivN_cumulative, ρ_ok_cons. Qed. Lemma ST_Conv n Γ (a : Tm n) A B i : Γ ⊨ a ∈ A -> Γ ⊨ B ∈ Univ i -> join A B -> Γ ⊨ a ∈ B. Proof. move => ha /SemWt_Univ h h0. move => ρ hρ. have {}h0 : join (subst_Tm ρ A) (subst_Tm ρ B) by eauto using join_substing. move /ha : (hρ){ha} => [m [PA [h1 h2]]]. move /h : (hρ){h} => [S hS]. have ? : PA = S by eauto using InterpUniv_Join'. subst. eauto. Qed. Lemma ST_Abs n Γ (a : Tm (S n)) A B i : Γ ⊨ TBind TPi A B ∈ (Univ i) -> funcomp (ren_Tm shift) (scons A Γ) ⊨ a ∈ B -> Γ ⊨ Abs a ∈ TBind TPi A B. Proof. rename a into b. move /SemWt_Univ => + hb ρ hρ. move /(_ _ hρ) => [PPi hPPi]. exists i, PPi. split => //. simpl in hPPi. move /InterpUniv_Bind_inv_nopf : hPPi. move => [PA [hPA [hTot ?]]]. subst=>/=. move => a PB ha. asimpl => hPB. move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply]. move /hb. intros (m & PB0 & hPB0 & hPB0'). replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'. apply : InterpUniv_back_clos; eauto. apply : RPar'.AppAbs'; eauto using RPar'.refl. by asimpl. Qed. Lemma ST_App n Γ (b a : Tm n) A B : Γ ⊨ b ∈ TBind TPi A B -> Γ ⊨ a ∈ A -> Γ ⊨ App b a ∈ subst_Tm (scons a VarTm) B. Proof. move => hf hb ρ hρ. move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf). move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb). simpl in hPi. move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst. have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. move : hf (hb). move/[apply]. move : hTot hb. move/[apply]. asimpl. hauto lq:on. Qed. Lemma ST_Pair n Γ (a b : Tm n) A B i : Γ ⊨ TBind TSig A B ∈ (Univ i) -> Γ ⊨ a ∈ A -> Γ ⊨ b ∈ subst_Tm (scons a VarTm) B -> Γ ⊨ Pair a b ∈ TBind TSig A B. Proof. move /SemWt_Univ => + ha hb ρ hρ. move /(_ _ hρ) => [PPi hPPi]. exists i, PPi. split => //. simpl in hPPi. move /InterpUniv_Bind_inv_nopf : hPPi. move => [PA [hPA [hTot ?]]]. subst=>/=. rewrite /SumSpace. exists (subst_Tm ρ a), (subst_Tm ρ b). split. - hauto l:on use:Pars.substing. - move /ha : (hρ){ha}. move => [m][PA0][h0]h1. move /hb : (hρ){hb}. move => [k][PB][h2]h3. have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. split => // PB0. move : h2. asimpl => *. have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst. Qed. Lemma ST_Proj1 n Γ (a : Tm n) A B : Γ ⊨ a ∈ TBind TSig A B -> Γ ⊨ Proj PL a ∈ A. Proof. move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. move : h0 => [S][h2][h3]?. subst. move : h1 => /=. rewrite /SumSpace. move => [a0 [b0 [h4 [h5 h6]]]]. exists m, S. split => //=. have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPar's.ProjCong. have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'. have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r. move => h. apply : InterpUniv_back_clos_star; eauto. Qed. Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C : RPar'.R B C -> RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A). Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed. Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C : rtc RPar'.R B C -> rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A). Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed. Lemma ST_Proj2 n Γ (a : Tm n) A B : Γ ⊨ a ∈ TBind TSig A B -> Γ ⊨ Proj PR a ∈ subst_Tm (scons (Proj PL a) VarTm) B. Proof. move => h ρ hρ. move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. move : h0 => [S][h2][h3]?. subst. move : h1 => /=. rewrite /SumSpace. move => [a0 [b0 [h4 [h5 h6]]]]. specialize h3 with (1 := h5). move : h3 => [PB hPB]. have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPar's.ProjCong. have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl. have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl. exists m, PB. asimpl. split. - have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r. have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's. move : hPB. asimpl. eauto using InterpUnivN_back_preservation_star. - hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star. Qed.