Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import fp_red. From Hammer Require Import Tactics. From Equations Require Import Equations. Require Import ssreflect. Require Import Logic.PropExtensionality (propositional_extensionality). From stdpp Require Import relations (rtc(..)). Definition ProdSpace {n} (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop) : Tm n -> Prop := fun b => forall a PB, PA a -> PF a PB -> PB (App b a). Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop := | InterpExt_Fun A B PA PF : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ Pi A B ⟧ i ;; I ↘ (ProdSpace PA PF) | InterpExt_Univ j : j < i -> ⟦ Univ j ⟧ i ;; I ↘ (I n j) | InterpExt_Step A A0 PA : RPar.R A A0 -> ⟦ A0 ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PA where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). Lemma InterpExt_Univ' {n} i I j (PF : Tm n -> Prop) : PF = I n j -> j < i -> ⟦ Univ j ⟧ i ;; I ↘ PF. Proof. hauto lq:on ctrs:InterpExt. Qed. Infix " (Tm n -> Prop) -> Prop by wf i lt := InterpUnivN n i := @InterpExt n i (fun n j A => match j exists PA, InterpUnivN n j A PA | right _ => False end). Arguments InterpUnivN {n}. Lemma InterpExt_lt_impl {n : nat} i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I n j = I' n j) -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI h. elim : A PA /h. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. Lemma InterpExt_lt_eq {n : nat} i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I n j = I' n j) -> ⟦ A ⟧ i ;; I ↘ PA = ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI. apply propositional_extensionality. have : forall j, j < i -> I' n j = I n j by sfirstorder. firstorder using InterpExt_lt_impl. Qed. Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). Lemma InterpUnivN_nolt n i : @InterpUnivN n i = @InterpExt n i (fun n j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUnivN. extensionality A. extensionality PA. set I0 := (fun _ => _). set I1 := (fun _ => _). apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n): RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed. Lemma InterpExt_Fun_inv n i I (A : Tm n) B P (h : ⟦ Pi A B ⟧ i ;; I ↘ P) : exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = ProdSpace PA PF. Proof. move E : (Pi A B) h => T h. move : A B E. elim : T P / h => //. - hauto l:on. - move => A A0 PA hA hA0 hPi A1 B ?. subst. elim /RPar.inv : hA => //= _ A2 A3 B0 B1 hA1 hB0 [*]. subst. hauto lq:on ctrs:InterpExt use:RPar_substone. Qed. Lemma InterpExt_Fun_nopf n i I (A : Tm n) B PA : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ Pi A B ⟧ i ;; I ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)). Proof. move => h0 h1. apply InterpExt_Fun =>//. Qed. Lemma InterpUnivN_Fun_nopf n i (A : Tm n) B PA : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) -> ⟦ Pi A B ⟧ i ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)). Proof. hauto l:on use:InterpExt_Fun_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_cumulative n i j I (A : Tm n) PA : i < j -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ j ;; I ↘ PA. Proof. move => h h0. elim : A PA /h0; hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans. Qed. Lemma InterpUnivN_cumulative n i (A : Tm n) PA : ⟦ A ⟧ i ↘ PA -> forall j, i < j -> ⟦ A ⟧ j ↘ PA. Proof. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. Qed. Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) : RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. move : B. elim : A P / h; auto. - move => A B PA PF hPA ihPA hPB hPB' ihPB T hT. elim /RPar.inv : hT => //. move => hPar A0 A1 B0 B1 h0 h1 [? ?] ?; subst. apply InterpExt_Fun; auto. move => a PB hPB0. apply : ihPB; eauto. sfirstorder use:RPar.cong, RPar.refl. - hauto lq:on inv:RPar.R ctrs:InterpExt. - move => A B P h0 h1 ih1 C hC. have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC. hauto lq:on ctrs:InterpExt. Qed. Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed. Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on ctrs:InterpExt. Qed. Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed. Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed. Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.