Require Import core unscoped. Require Import Setoid Morphisms Relation_Definitions. Module Core. Inductive PTag : Type := | PL : PTag | PR : PTag. Lemma congr_PL : PL = PL. Proof. exact (eq_refl). Qed. Lemma congr_PR : PR = PR. Proof. exact (eq_refl). Qed. Inductive PTm : Type := | VarPTm : nat -> PTm | PAbs : PTm -> PTm | PApp : PTm -> PTm -> PTm | PPair : PTm -> PTm -> PTm | PProj : PTag -> PTm -> PTm | PConst : nat -> PTm. Lemma congr_PAbs {s0 : PTm} {t0 : PTm} (H0 : s0 = t0) : PAbs s0 = PAbs t0. Proof. exact (eq_trans eq_refl (ap (fun x => PAbs x) H0)). Qed. Lemma congr_PApp {s0 : PTm} {s1 : PTm} {t0 : PTm} {t1 : PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PApp s0 s1 = PApp t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PApp x s1) H0)) (ap (fun x => PApp t0 x) H1)). Qed. Lemma congr_PPair {s0 : PTm} {s1 : PTm} {t0 : PTm} {t1 : PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PPair s0 s1 = PPair t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PPair x s1) H0)) (ap (fun x => PPair t0 x) H1)). Qed. Lemma congr_PProj {s0 : PTag} {s1 : PTm} {t0 : PTag} {t1 : PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PProj s0 s1 = PProj t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PProj x s1) H0)) (ap (fun x => PProj t0 x) H1)). Qed. Lemma congr_PConst {s0 : nat} {t0 : nat} (H0 : s0 = t0) : PConst s0 = PConst t0. Proof. exact (eq_trans eq_refl (ap (fun x => PConst x) H0)). Qed. Lemma upRen_PTm_PTm (xi : nat -> nat) : nat -> nat. Proof. exact (up_ren xi). Defined. Fixpoint ren_PTm (xi_PTm : nat -> nat) (s : PTm) {struct s} : PTm := match s with | VarPTm s0 => VarPTm (xi_PTm s0) | PAbs s0 => PAbs (ren_PTm (upRen_PTm_PTm xi_PTm) s0) | PApp s0 s1 => PApp (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PPair s0 s1 => PPair (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PProj s0 s1 => PProj s0 (ren_PTm xi_PTm s1) | PConst s0 => PConst s0 end. Lemma up_PTm_PTm (sigma : nat -> PTm) : nat -> PTm. Proof. exact (scons (VarPTm var_zero) (funcomp (ren_PTm shift) sigma)). Defined. Fixpoint subst_PTm (sigma_PTm : nat -> PTm) (s : PTm) {struct s} : PTm := match s with | VarPTm s0 => sigma_PTm s0 | PAbs s0 => PAbs (subst_PTm (up_PTm_PTm sigma_PTm) s0) | PApp s0 s1 => PApp (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PPair s0 s1 => PPair (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PProj s0 s1 => PProj s0 (subst_PTm sigma_PTm s1) | PConst s0 => PConst s0 end. Lemma upId_PTm_PTm (sigma : nat -> PTm) (Eq : forall x, sigma x = VarPTm x) : forall x, up_PTm_PTm sigma x = VarPTm x. Proof. exact (fun n => match n with | S n' => ap (ren_PTm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint idSubst_PTm (sigma_PTm : nat -> PTm) (Eq_PTm : forall x, sigma_PTm x = VarPTm x) (s : PTm) {struct s} : subst_PTm sigma_PTm s = s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (idSubst_PTm sigma_PTm Eq_PTm s0) (idSubst_PTm sigma_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (idSubst_PTm sigma_PTm Eq_PTm s0) (idSubst_PTm sigma_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma upExtRen_PTm_PTm (xi : nat -> nat) (zeta : nat -> nat) (Eq : forall x, xi x = zeta x) : forall x, upRen_PTm_PTm xi x = upRen_PTm_PTm zeta x. Proof. exact (fun n => match n with | S n' => ap shift (Eq n') | O => eq_refl end). Qed. Fixpoint extRen_PTm (xi_PTm : nat -> nat) (zeta_PTm : nat -> nat) (Eq_PTm : forall x, xi_PTm x = zeta_PTm x) (s : PTm) {struct s} : ren_PTm xi_PTm s = ren_PTm zeta_PTm s := match s with | VarPTm s0 => ap (VarPTm) (Eq_PTm s0) | PAbs s0 => congr_PAbs (extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) (upExtRen_PTm_PTm _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma upExt_PTm_PTm (sigma : nat -> PTm) (tau : nat -> PTm) (Eq : forall x, sigma x = tau x) : forall x, up_PTm_PTm sigma x = up_PTm_PTm tau x. Proof. exact (fun n => match n with | S n' => ap (ren_PTm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint ext_PTm (sigma_PTm : nat -> PTm) (tau_PTm : nat -> PTm) (Eq_PTm : forall x, sigma_PTm x = tau_PTm x) (s : PTm) {struct s} : subst_PTm sigma_PTm s = subst_PTm tau_PTm s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) (upExt_PTm_PTm _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma up_ren_ren_PTm_PTm (xi : nat -> nat) (zeta : nat -> nat) (rho : nat -> nat) (Eq : forall x, funcomp zeta xi x = rho x) : forall x, funcomp (upRen_PTm_PTm zeta) (upRen_PTm_PTm xi) x = upRen_PTm_PTm rho x. Proof. exact (up_ren_ren xi zeta rho Eq). Qed. Fixpoint compRenRen_PTm (xi_PTm : nat -> nat) (zeta_PTm : nat -> nat) (rho_PTm : nat -> nat) (Eq_PTm : forall x, funcomp zeta_PTm xi_PTm x = rho_PTm x) (s : PTm) {struct s} : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm rho_PTm s := match s with | VarPTm s0 => ap (VarPTm) (Eq_PTm s0) | PAbs s0 => congr_PAbs (compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma up_ren_subst_PTm_PTm (xi : nat -> nat) (tau : nat -> PTm) (theta : nat -> PTm) (Eq : forall x, funcomp tau xi x = theta x) : forall x, funcomp (up_PTm_PTm tau) (upRen_PTm_PTm xi) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | S n' => ap (ren_PTm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint compRenSubst_PTm (xi_PTm : nat -> nat) (tau_PTm : nat -> PTm) (theta_PTm : nat -> PTm) (Eq_PTm : forall x, funcomp tau_PTm xi_PTm x = theta_PTm x) (s : PTm) {struct s} : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm) (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma up_subst_ren_PTm_PTm (sigma : nat -> PTm) (zeta_PTm : nat -> nat) (theta : nat -> PTm) (Eq : forall x, funcomp (ren_PTm zeta_PTm) sigma x = theta x) : forall x, funcomp (ren_PTm (upRen_PTm_PTm zeta_PTm)) (up_PTm_PTm sigma) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | S n' => eq_trans (compRenRen_PTm shift (upRen_PTm_PTm zeta_PTm) (funcomp shift zeta_PTm) (fun x => eq_refl) (sigma n')) (eq_trans (eq_sym (compRenRen_PTm zeta_PTm shift (funcomp shift zeta_PTm) (fun x => eq_refl) (sigma n'))) (ap (ren_PTm shift) (Eq n'))) | O => eq_refl end). Qed. Fixpoint compSubstRen_PTm (sigma_PTm : nat -> PTm) (zeta_PTm : nat -> nat) (theta_PTm : nat -> PTm) (Eq_PTm : forall x, funcomp (ren_PTm zeta_PTm) sigma_PTm x = theta_PTm x) (s : PTm) {struct s} : ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm) (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma up_subst_subst_PTm_PTm (sigma : nat -> PTm) (tau_PTm : nat -> PTm) (theta : nat -> PTm) (Eq : forall x, funcomp (subst_PTm tau_PTm) sigma x = theta x) : forall x, funcomp (subst_PTm (up_PTm_PTm tau_PTm)) (up_PTm_PTm sigma) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | S n' => eq_trans (compRenSubst_PTm shift (up_PTm_PTm tau_PTm) (funcomp (up_PTm_PTm tau_PTm) shift) (fun x => eq_refl) (sigma n')) (eq_trans (eq_sym (compSubstRen_PTm tau_PTm shift (funcomp (ren_PTm shift) tau_PTm) (fun x => eq_refl) (sigma n'))) (ap (ren_PTm shift) (Eq n'))) | O => eq_refl end). Qed. Fixpoint compSubstSubst_PTm (sigma_PTm : nat -> PTm) (tau_PTm : nat -> PTm) (theta_PTm : nat -> PTm) (Eq_PTm : forall x, funcomp (subst_PTm tau_PTm) sigma_PTm x = theta_PTm x) (s : PTm) {struct s} : subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma renRen_PTm (xi_PTm : nat -> nat) (zeta_PTm : nat -> nat) (s : PTm) : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm (funcomp zeta_PTm xi_PTm) s. Proof. exact (compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma renRen'_PTm_pointwise (xi_PTm : nat -> nat) (zeta_PTm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (ren_PTm xi_PTm)) (ren_PTm (funcomp zeta_PTm xi_PTm)). Proof. exact (fun s => compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma renSubst_PTm (xi_PTm : nat -> nat) (tau_PTm : nat -> PTm) (s : PTm) : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm (funcomp tau_PTm xi_PTm) s. Proof. exact (compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma renSubst_PTm_pointwise (xi_PTm : nat -> nat) (tau_PTm : nat -> PTm) : pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (ren_PTm xi_PTm)) (subst_PTm (funcomp tau_PTm xi_PTm)). Proof. exact (fun s => compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma substRen_PTm (sigma_PTm : nat -> PTm) (zeta_PTm : nat -> nat) (s : PTm) : ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm) s. Proof. exact (compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma substRen_PTm_pointwise (sigma_PTm : nat -> PTm) (zeta_PTm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (subst_PTm sigma_PTm)) (subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm)). Proof. exact (fun s => compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma substSubst_PTm (sigma_PTm : nat -> PTm) (tau_PTm : nat -> PTm) (s : PTm) : subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm) s. Proof. exact (compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma substSubst_PTm_pointwise (sigma_PTm : nat -> PTm) (tau_PTm : nat -> PTm) : pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (subst_PTm sigma_PTm)) (subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm)). Proof. exact (fun s => compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma rinstInst_up_PTm_PTm (xi : nat -> nat) (sigma : nat -> PTm) (Eq : forall x, funcomp (VarPTm) xi x = sigma x) : forall x, funcomp (VarPTm) (upRen_PTm_PTm xi) x = up_PTm_PTm sigma x. Proof. exact (fun n => match n with | S n' => ap (ren_PTm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint rinst_inst_PTm (xi_PTm : nat -> nat) (sigma_PTm : nat -> PTm) (Eq_PTm : forall x, funcomp (VarPTm) xi_PTm x = sigma_PTm x) (s : PTm) {struct s} : ren_PTm xi_PTm s = subst_PTm sigma_PTm s := match s with | VarPTm s0 => Eq_PTm s0 | PAbs s0 => congr_PAbs (rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm) (rinstInst_up_PTm_PTm _ _ Eq_PTm) s0) | PApp s0 s1 => congr_PApp (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PPair s0 s1 => congr_PPair (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PProj s0 s1 => congr_PProj (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PConst s0 => congr_PConst (eq_refl s0) end. Lemma rinstInst'_PTm (xi_PTm : nat -> nat) (s : PTm) : ren_PTm xi_PTm s = subst_PTm (funcomp (VarPTm) xi_PTm) s. Proof. exact (rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s). Qed. Lemma rinstInst'_PTm_pointwise (xi_PTm : nat -> nat) : pointwise_relation _ eq (ren_PTm xi_PTm) (subst_PTm (funcomp (VarPTm) xi_PTm)). Proof. exact (fun s => rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s). Qed. Lemma instId'_PTm (s : PTm) : subst_PTm (VarPTm) s = s. Proof. exact (idSubst_PTm (VarPTm) (fun n => eq_refl) s). Qed. Lemma instId'_PTm_pointwise : pointwise_relation _ eq (subst_PTm (VarPTm)) id. Proof. exact (fun s => idSubst_PTm (VarPTm) (fun n => eq_refl) s). Qed. Lemma rinstId'_PTm (s : PTm) : ren_PTm id s = s. Proof. exact (eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)). Qed. Lemma rinstId'_PTm_pointwise : pointwise_relation _ eq (@ren_PTm id) id. Proof. exact (fun s => eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)). Qed. Lemma varL'_PTm (sigma_PTm : nat -> PTm) (x : nat) : subst_PTm sigma_PTm (VarPTm x) = sigma_PTm x. Proof. exact (eq_refl). Qed. Lemma varL'_PTm_pointwise (sigma_PTm : nat -> PTm) : pointwise_relation _ eq (funcomp (subst_PTm sigma_PTm) (VarPTm)) sigma_PTm. Proof. exact (fun x => eq_refl). Qed. Lemma varLRen'_PTm (xi_PTm : nat -> nat) (x : nat) : ren_PTm xi_PTm (VarPTm x) = VarPTm (xi_PTm x). Proof. exact (eq_refl). Qed. Lemma varLRen'_PTm_pointwise (xi_PTm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_PTm xi_PTm) (VarPTm)) (funcomp (VarPTm) xi_PTm). Proof. exact (fun x => eq_refl). Qed. Inductive TTag : Type := | TPi : TTag | TSig : TTag. Lemma congr_TPi : TPi = TPi. Proof. exact (eq_refl). Qed. Lemma congr_TSig : TSig = TSig. Proof. exact (eq_refl). Qed. Inductive Tm : Type := | VarTm : nat -> Tm | Abs : Tm -> Tm -> Tm | App : Tm -> Tm -> Tm | Pair : Tm -> Tm -> Tm | Proj : PTag -> Tm -> Tm | TBind : TTag -> Tm -> Tm -> Tm | Univ : nat -> Tm | BVal : bool -> Tm | Bool : Tm | If : Tm -> Tm -> Tm -> Tm. Lemma congr_Abs {s0 : Tm} {s1 : Tm} {t0 : Tm} {t1 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) : Abs s0 s1 = Abs t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => Abs x s1) H0)) (ap (fun x => Abs t0 x) H1)). Qed. Lemma congr_App {s0 : Tm} {s1 : Tm} {t0 : Tm} {t1 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) : App s0 s1 = App t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => App x s1) H0)) (ap (fun x => App t0 x) H1)). Qed. Lemma congr_Pair {s0 : Tm} {s1 : Tm} {t0 : Tm} {t1 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) : Pair s0 s1 = Pair t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => Pair x s1) H0)) (ap (fun x => Pair t0 x) H1)). Qed. Lemma congr_Proj {s0 : PTag} {s1 : Tm} {t0 : PTag} {t1 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) : Proj s0 s1 = Proj t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => Proj x s1) H0)) (ap (fun x => Proj t0 x) H1)). Qed. Lemma congr_TBind {s0 : TTag} {s1 : Tm} {s2 : Tm} {t0 : TTag} {t1 : Tm} {t2 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) (H2 : s2 = t2) : TBind s0 s1 s2 = TBind t0 t1 t2. Proof. exact (eq_trans (eq_trans (eq_trans eq_refl (ap (fun x => TBind x s1 s2) H0)) (ap (fun x => TBind t0 x s2) H1)) (ap (fun x => TBind t0 t1 x) H2)). Qed. Lemma congr_Univ {s0 : nat} {t0 : nat} (H0 : s0 = t0) : Univ s0 = Univ t0. Proof. exact (eq_trans eq_refl (ap (fun x => Univ x) H0)). Qed. Lemma congr_BVal {s0 : bool} {t0 : bool} (H0 : s0 = t0) : BVal s0 = BVal t0. Proof. exact (eq_trans eq_refl (ap (fun x => BVal x) H0)). Qed. Lemma congr_Bool : Bool = Bool. Proof. exact (eq_refl). Qed. Lemma congr_If {s0 : Tm} {s1 : Tm} {s2 : Tm} {t0 : Tm} {t1 : Tm} {t2 : Tm} (H0 : s0 = t0) (H1 : s1 = t1) (H2 : s2 = t2) : If s0 s1 s2 = If t0 t1 t2. Proof. exact (eq_trans (eq_trans (eq_trans eq_refl (ap (fun x => If x s1 s2) H0)) (ap (fun x => If t0 x s2) H1)) (ap (fun x => If t0 t1 x) H2)). Qed. Lemma upRen_Tm_Tm (xi : nat -> nat) : nat -> nat. Proof. exact (up_ren xi). Defined. Fixpoint ren_Tm (xi_Tm : nat -> nat) (s : Tm) {struct s} : Tm := match s with | VarTm s0 => VarTm (xi_Tm s0) | Abs s0 s1 => Abs (ren_Tm xi_Tm s0) (ren_Tm (upRen_Tm_Tm xi_Tm) s1) | App s0 s1 => App (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) | Pair s0 s1 => Pair (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) | Proj s0 s1 => Proj s0 (ren_Tm xi_Tm s1) | TBind s0 s1 s2 => TBind s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2) | Univ s0 => Univ s0 | BVal s0 => BVal s0 | Bool => Bool | If s0 s1 s2 => If (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) (ren_Tm xi_Tm s2) end. Lemma up_Tm_Tm (sigma : nat -> Tm) : nat -> Tm. Proof. exact (scons (VarTm var_zero) (funcomp (ren_Tm shift) sigma)). Defined. Fixpoint subst_Tm (sigma_Tm : nat -> Tm) (s : Tm) {struct s} : Tm := match s with | VarTm s0 => sigma_Tm s0 | Abs s0 s1 => Abs (subst_Tm sigma_Tm s0) (subst_Tm (up_Tm_Tm sigma_Tm) s1) | App s0 s1 => App (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) | Pair s0 s1 => Pair (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) | Proj s0 s1 => Proj s0 (subst_Tm sigma_Tm s1) | TBind s0 s1 s2 => TBind s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2) | Univ s0 => Univ s0 | BVal s0 => BVal s0 | Bool => Bool | If s0 s1 s2 => If (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) (subst_Tm sigma_Tm s2) end. Lemma upId_Tm_Tm (sigma : nat -> Tm) (Eq : forall x, sigma x = VarTm x) : forall x, up_Tm_Tm sigma x = VarTm x. Proof. exact (fun n => match n with | S n' => ap (ren_Tm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint idSubst_Tm (sigma_Tm : nat -> Tm) (Eq_Tm : forall x, sigma_Tm x = VarTm x) (s : Tm) {struct s} : subst_Tm sigma_Tm s = s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s1) | App s0 s1 => congr_App (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1) (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1) (idSubst_Tm sigma_Tm Eq_Tm s2) end. Lemma upExtRen_Tm_Tm (xi : nat -> nat) (zeta : nat -> nat) (Eq : forall x, xi x = zeta x) : forall x, upRen_Tm_Tm xi x = upRen_Tm_Tm zeta x. Proof. exact (fun n => match n with | S n' => ap shift (Eq n') | O => eq_refl end). Qed. Fixpoint extRen_Tm (xi_Tm : nat -> nat) (zeta_Tm : nat -> nat) (Eq_Tm : forall x, xi_Tm x = zeta_Tm x) (s : Tm) {struct s} : ren_Tm xi_Tm s = ren_Tm zeta_Tm s := match s with | VarTm s0 => ap (VarTm) (Eq_Tm s0) | Abs s0 s1 => congr_Abs (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) (extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (upExtRen_Tm_Tm _ _ Eq_Tm) s1) | App s0 s1 => congr_App (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (upExtRen_Tm_Tm _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s2) end. Lemma upExt_Tm_Tm (sigma : nat -> Tm) (tau : nat -> Tm) (Eq : forall x, sigma x = tau x) : forall x, up_Tm_Tm sigma x = up_Tm_Tm tau x. Proof. exact (fun n => match n with | S n' => ap (ren_Tm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint ext_Tm (sigma_Tm : nat -> Tm) (tau_Tm : nat -> Tm) (Eq_Tm : forall x, sigma_Tm x = tau_Tm x) (s : Tm) {struct s} : subst_Tm sigma_Tm s = subst_Tm tau_Tm s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) (ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm) s1) | App s0 s1 => congr_App (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s2) end. Lemma up_ren_ren_Tm_Tm (xi : nat -> nat) (zeta : nat -> nat) (rho : nat -> nat) (Eq : forall x, funcomp zeta xi x = rho x) : forall x, funcomp (upRen_Tm_Tm zeta) (upRen_Tm_Tm xi) x = upRen_Tm_Tm rho x. Proof. exact (up_ren_ren xi zeta rho Eq). Qed. Fixpoint compRenRen_Tm (xi_Tm : nat -> nat) (zeta_Tm : nat -> nat) (rho_Tm : nat -> nat) (Eq_Tm : forall x, funcomp zeta_Tm xi_Tm x = rho_Tm x) (s : Tm) {struct s} : ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm rho_Tm s := match s with | VarTm s0 => ap (VarTm) (Eq_Tm s0) | Abs s0 s1 => congr_Abs (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) (compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s1) | App s0 s1 => congr_App (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) (compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s2) end. Lemma up_ren_subst_Tm_Tm (xi : nat -> nat) (tau : nat -> Tm) (theta : nat -> Tm) (Eq : forall x, funcomp tau xi x = theta x) : forall x, funcomp (up_Tm_Tm tau) (upRen_Tm_Tm xi) x = up_Tm_Tm theta x. Proof. exact (fun n => match n with | S n' => ap (ren_Tm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint compRenSubst_Tm (xi_Tm : nat -> nat) (tau_Tm : nat -> Tm) (theta_Tm : nat -> Tm) (Eq_Tm : forall x, funcomp tau_Tm xi_Tm x = theta_Tm x) (s : Tm) {struct s} : subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm theta_Tm s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) (compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm) (up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s1) | App s0 s1 => congr_App (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) (compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm) (up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s2) end. Lemma up_subst_ren_Tm_Tm (sigma : nat -> Tm) (zeta_Tm : nat -> nat) (theta : nat -> Tm) (Eq : forall x, funcomp (ren_Tm zeta_Tm) sigma x = theta x) : forall x, funcomp (ren_Tm (upRen_Tm_Tm zeta_Tm)) (up_Tm_Tm sigma) x = up_Tm_Tm theta x. Proof. exact (fun n => match n with | S n' => eq_trans (compRenRen_Tm shift (upRen_Tm_Tm zeta_Tm) (funcomp shift zeta_Tm) (fun x => eq_refl) (sigma n')) (eq_trans (eq_sym (compRenRen_Tm zeta_Tm shift (funcomp shift zeta_Tm) (fun x => eq_refl) (sigma n'))) (ap (ren_Tm shift) (Eq n'))) | O => eq_refl end). Qed. Fixpoint compSubstRen_Tm (sigma_Tm : nat -> Tm) (zeta_Tm : nat -> nat) (theta_Tm : nat -> Tm) (Eq_Tm : forall x, funcomp (ren_Tm zeta_Tm) sigma_Tm x = theta_Tm x) (s : Tm) {struct s} : ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) (compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm) (up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s1) | App s0 s1 => congr_App (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) (compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm) (up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s2) end. Lemma up_subst_subst_Tm_Tm (sigma : nat -> Tm) (tau_Tm : nat -> Tm) (theta : nat -> Tm) (Eq : forall x, funcomp (subst_Tm tau_Tm) sigma x = theta x) : forall x, funcomp (subst_Tm (up_Tm_Tm tau_Tm)) (up_Tm_Tm sigma) x = up_Tm_Tm theta x. Proof. exact (fun n => match n with | S n' => eq_trans (compRenSubst_Tm shift (up_Tm_Tm tau_Tm) (funcomp (up_Tm_Tm tau_Tm) shift) (fun x => eq_refl) (sigma n')) (eq_trans (eq_sym (compSubstRen_Tm tau_Tm shift (funcomp (ren_Tm shift) tau_Tm) (fun x => eq_refl) (sigma n'))) (ap (ren_Tm shift) (Eq n'))) | O => eq_refl end). Qed. Fixpoint compSubstSubst_Tm (sigma_Tm : nat -> Tm) (tau_Tm : nat -> Tm) (theta_Tm : nat -> Tm) (Eq_Tm : forall x, funcomp (subst_Tm tau_Tm) sigma_Tm x = theta_Tm x) (s : Tm) {struct s} : subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) (compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s1) | App s0 s1 => congr_App (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) (compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s2) end. Lemma renRen_Tm (xi_Tm : nat -> nat) (zeta_Tm : nat -> nat) (s : Tm) : ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm (funcomp zeta_Tm xi_Tm) s. Proof. exact (compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s). Qed. Lemma renRen'_Tm_pointwise (xi_Tm : nat -> nat) (zeta_Tm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (ren_Tm xi_Tm)) (ren_Tm (funcomp zeta_Tm xi_Tm)). Proof. exact (fun s => compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s). Qed. Lemma renSubst_Tm (xi_Tm : nat -> nat) (tau_Tm : nat -> Tm) (s : Tm) : subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm (funcomp tau_Tm xi_Tm) s. Proof. exact (compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s). Qed. Lemma renSubst_Tm_pointwise (xi_Tm : nat -> nat) (tau_Tm : nat -> Tm) : pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (ren_Tm xi_Tm)) (subst_Tm (funcomp tau_Tm xi_Tm)). Proof. exact (fun s => compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s). Qed. Lemma substRen_Tm (sigma_Tm : nat -> Tm) (zeta_Tm : nat -> nat) (s : Tm) : ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm) s. Proof. exact (compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s). Qed. Lemma substRen_Tm_pointwise (sigma_Tm : nat -> Tm) (zeta_Tm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (subst_Tm sigma_Tm)) (subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm)). Proof. exact (fun s => compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s). Qed. Lemma substSubst_Tm (sigma_Tm : nat -> Tm) (tau_Tm : nat -> Tm) (s : Tm) : subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm) s. Proof. exact (compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s). Qed. Lemma substSubst_Tm_pointwise (sigma_Tm : nat -> Tm) (tau_Tm : nat -> Tm) : pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (subst_Tm sigma_Tm)) (subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm)). Proof. exact (fun s => compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s). Qed. Lemma rinstInst_up_Tm_Tm (xi : nat -> nat) (sigma : nat -> Tm) (Eq : forall x, funcomp (VarTm) xi x = sigma x) : forall x, funcomp (VarTm) (upRen_Tm_Tm xi) x = up_Tm_Tm sigma x. Proof. exact (fun n => match n with | S n' => ap (ren_Tm shift) (Eq n') | O => eq_refl end). Qed. Fixpoint rinst_inst_Tm (xi_Tm : nat -> nat) (sigma_Tm : nat -> Tm) (Eq_Tm : forall x, funcomp (VarTm) xi_Tm x = sigma_Tm x) (s : Tm) {struct s} : ren_Tm xi_Tm s = subst_Tm sigma_Tm s := match s with | VarTm s0 => Eq_Tm s0 | Abs s0 s1 => congr_Abs (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) (rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm) (rinstInst_up_Tm_Tm _ _ Eq_Tm) s1) | App s0 s1 => congr_App (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) | Pair s0 s1 => congr_Pair (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) | Proj s0 s1 => congr_Proj (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) | TBind s0 s1 s2 => congr_TBind (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) (rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm) (rinstInst_up_Tm_Tm _ _ Eq_Tm) s2) | Univ s0 => congr_Univ (eq_refl s0) | BVal s0 => congr_BVal (eq_refl s0) | Bool => congr_Bool | If s0 s1 s2 => congr_If (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s2) end. Lemma rinstInst'_Tm (xi_Tm : nat -> nat) (s : Tm) : ren_Tm xi_Tm s = subst_Tm (funcomp (VarTm) xi_Tm) s. Proof. exact (rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s). Qed. Lemma rinstInst'_Tm_pointwise (xi_Tm : nat -> nat) : pointwise_relation _ eq (ren_Tm xi_Tm) (subst_Tm (funcomp (VarTm) xi_Tm)). Proof. exact (fun s => rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s). Qed. Lemma instId'_Tm (s : Tm) : subst_Tm (VarTm) s = s. Proof. exact (idSubst_Tm (VarTm) (fun n => eq_refl) s). Qed. Lemma instId'_Tm_pointwise : pointwise_relation _ eq (subst_Tm (VarTm)) id. Proof. exact (fun s => idSubst_Tm (VarTm) (fun n => eq_refl) s). Qed. Lemma rinstId'_Tm (s : Tm) : ren_Tm id s = s. Proof. exact (eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)). Qed. Lemma rinstId'_Tm_pointwise : pointwise_relation _ eq (@ren_Tm id) id. Proof. exact (fun s => eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)). Qed. Lemma varL'_Tm (sigma_Tm : nat -> Tm) (x : nat) : subst_Tm sigma_Tm (VarTm x) = sigma_Tm x. Proof. exact (eq_refl). Qed. Lemma varL'_Tm_pointwise (sigma_Tm : nat -> Tm) : pointwise_relation _ eq (funcomp (subst_Tm sigma_Tm) (VarTm)) sigma_Tm. Proof. exact (fun x => eq_refl). Qed. Lemma varLRen'_Tm (xi_Tm : nat -> nat) (x : nat) : ren_Tm xi_Tm (VarTm x) = VarTm (xi_Tm x). Proof. exact (eq_refl). Qed. Lemma varLRen'_Tm_pointwise (xi_Tm : nat -> nat) : pointwise_relation _ eq (funcomp (ren_Tm xi_Tm) (VarTm)) (funcomp (VarTm) xi_Tm). Proof. exact (fun x => eq_refl). Qed. Class Up_Tm X Y := up_Tm : X -> Y. Class Up_PTm X Y := up_PTm : X -> Y. #[global] Instance Subst_Tm : (Subst1 _ _ _) := @subst_Tm. #[global] Instance Up_Tm_Tm : (Up_Tm _ _) := @up_Tm_Tm. #[global] Instance Ren_Tm : (Ren1 _ _ _) := @ren_Tm. #[global] Instance VarInstance_Tm : (Var _ _) := @VarTm. #[global] Instance Subst_PTm : (Subst1 _ _ _) := @subst_PTm. #[global] Instance Up_PTm_PTm : (Up_PTm _ _) := @up_PTm_PTm. #[global] Instance Ren_PTm : (Ren1 _ _ _) := @ren_PTm. #[global] Instance VarInstance_PTm : (Var _ _) := @VarPTm. Notation "[ sigma_Tm ]" := (subst_Tm sigma_Tm) ( at level 1, left associativity, only printing) : fscope. Notation "s [ sigma_Tm ]" := (subst_Tm sigma_Tm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "↑__Tm" := up_Tm (only printing) : subst_scope. Notation "↑__Tm" := up_Tm_Tm (only printing) : subst_scope. Notation "⟨ xi_Tm ⟩" := (ren_Tm xi_Tm) ( at level 1, left associativity, only printing) : fscope. Notation "s ⟨ xi_Tm ⟩" := (ren_Tm xi_Tm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "'var'" := VarTm ( at level 1, only printing) : subst_scope. Notation "x '__Tm'" := (@ids _ _ VarInstance_Tm x) ( at level 5, format "x __Tm", only printing) : subst_scope. Notation "x '__Tm'" := (VarTm x) ( at level 5, format "x __Tm") : subst_scope. Notation "[ sigma_PTm ]" := (subst_PTm sigma_PTm) ( at level 1, left associativity, only printing) : fscope. Notation "s [ sigma_PTm ]" := (subst_PTm sigma_PTm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "↑__PTm" := up_PTm (only printing) : subst_scope. Notation "↑__PTm" := up_PTm_PTm (only printing) : subst_scope. Notation "⟨ xi_PTm ⟩" := (ren_PTm xi_PTm) ( at level 1, left associativity, only printing) : fscope. Notation "s ⟨ xi_PTm ⟩" := (ren_PTm xi_PTm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "'var'" := VarPTm ( at level 1, only printing) : subst_scope. Notation "x '__PTm'" := (@ids _ _ VarInstance_PTm x) ( at level 5, format "x __PTm", only printing) : subst_scope. Notation "x '__PTm'" := (VarPTm x) ( at level 5, format "x __PTm") : subst_scope. #[global] Instance subst_Tm_morphism : (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@subst_Tm)). Proof. exact (fun f_Tm g_Tm Eq_Tm s t Eq_st => eq_ind s (fun t' => subst_Tm f_Tm s = subst_Tm g_Tm t') (ext_Tm f_Tm g_Tm Eq_Tm s) t Eq_st). Qed. #[global] Instance subst_Tm_morphism2 : (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@subst_Tm)). Proof. exact (fun f_Tm g_Tm Eq_Tm s => ext_Tm f_Tm g_Tm Eq_Tm s). Qed. #[global] Instance ren_Tm_morphism : (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@ren_Tm)). Proof. exact (fun f_Tm g_Tm Eq_Tm s t Eq_st => eq_ind s (fun t' => ren_Tm f_Tm s = ren_Tm g_Tm t') (extRen_Tm f_Tm g_Tm Eq_Tm s) t Eq_st). Qed. #[global] Instance ren_Tm_morphism2 : (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@ren_Tm)). Proof. exact (fun f_Tm g_Tm Eq_Tm s => extRen_Tm f_Tm g_Tm Eq_Tm s). Qed. #[global] Instance subst_PTm_morphism : (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@subst_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s t Eq_st => eq_ind s (fun t' => subst_PTm f_PTm s = subst_PTm g_PTm t') (ext_PTm f_PTm g_PTm Eq_PTm s) t Eq_st). Qed. #[global] Instance subst_PTm_morphism2 : (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@subst_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s => ext_PTm f_PTm g_PTm Eq_PTm s). Qed. #[global] Instance ren_PTm_morphism : (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@ren_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s t Eq_st => eq_ind s (fun t' => ren_PTm f_PTm s = ren_PTm g_PTm t') (extRen_PTm f_PTm g_PTm Eq_PTm s) t Eq_st). Qed. #[global] Instance ren_PTm_morphism2 : (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@ren_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s => extRen_PTm f_PTm g_PTm Eq_PTm s). Qed. Ltac auto_unfold := repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1, VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1, Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm, Subst1, subst1. Tactic Notation "auto_unfold" "in" "*" := repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1, VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1, Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm, Subst1, subst1 in *. Ltac asimpl' := repeat (first [ progress setoid_rewrite substSubst_Tm_pointwise | progress setoid_rewrite substSubst_Tm | progress setoid_rewrite substRen_Tm_pointwise | progress setoid_rewrite substRen_Tm | progress setoid_rewrite renSubst_Tm_pointwise | progress setoid_rewrite renSubst_Tm | progress setoid_rewrite renRen'_Tm_pointwise | progress setoid_rewrite renRen_Tm | progress setoid_rewrite substSubst_PTm_pointwise | progress setoid_rewrite substSubst_PTm | progress setoid_rewrite substRen_PTm_pointwise | progress setoid_rewrite substRen_PTm | progress setoid_rewrite renSubst_PTm_pointwise | progress setoid_rewrite renSubst_PTm | progress setoid_rewrite renRen'_PTm_pointwise | progress setoid_rewrite renRen_PTm | progress setoid_rewrite varLRen'_Tm_pointwise | progress setoid_rewrite varLRen'_Tm | progress setoid_rewrite varL'_Tm_pointwise | progress setoid_rewrite varL'_Tm | progress setoid_rewrite rinstId'_Tm_pointwise | progress setoid_rewrite rinstId'_Tm | progress setoid_rewrite instId'_Tm_pointwise | progress setoid_rewrite instId'_Tm | progress setoid_rewrite varLRen'_PTm_pointwise | progress setoid_rewrite varLRen'_PTm | progress setoid_rewrite varL'_PTm_pointwise | progress setoid_rewrite varL'_PTm | progress setoid_rewrite rinstId'_PTm_pointwise | progress setoid_rewrite rinstId'_PTm | progress setoid_rewrite instId'_PTm_pointwise | progress setoid_rewrite instId'_PTm | progress unfold up_Tm_Tm, upRen_Tm_Tm, up_PTm_PTm, upRen_PTm_PTm, up_ren | progress cbn[subst_Tm ren_Tm subst_PTm ren_PTm] | progress fsimpl ]). Ltac asimpl := check_no_evars; repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1, VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1, Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm, Subst1, subst1 in *; asimpl'; minimize. Tactic Notation "asimpl" "in" hyp(J) := revert J; asimpl; intros J. Tactic Notation "auto_case" := auto_case ltac:(asimpl; cbn; eauto). Ltac substify := auto_unfold; try setoid_rewrite rinstInst'_Tm_pointwise; try setoid_rewrite rinstInst'_Tm; try setoid_rewrite rinstInst'_PTm_pointwise; try setoid_rewrite rinstInst'_PTm. Ltac renamify := auto_unfold; try setoid_rewrite_left rinstInst'_Tm_pointwise; try setoid_rewrite_left rinstInst'_Tm; try setoid_rewrite_left rinstInst'_PTm_pointwise; try setoid_rewrite_left rinstInst'_PTm. End Core. Module Extra. Import Core. #[global] Hint Opaque subst_Tm: rewrite. #[global] Hint Opaque ren_Tm: rewrite. #[global] Hint Opaque subst_PTm: rewrite. #[global] Hint Opaque ren_PTm: rewrite. End Extra. Module interface. Export Core. Export Extra. End interface. Export interface.