Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import fp_red. From Hammer Require Import Tactics. From Equations Require Import Equations. Require Import ssreflect ssrbool. Require Import Logic.PropExtensionality (propositional_extensionality). From stdpp Require Import relations (rtc(..), rtc_subrel). Import Psatz. Definition ProdSpace (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop := forall a PB, PA a -> PF a PB -> PB (App b a). Definition SumSpace (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop := exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b). Definition BindSpace p := if p is TPi then ProdSpace else SumSpace. Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop := | InterpExt_Bind p A B PA PF : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ BindSpace p PA PF | InterpExt_Univ j : j < i -> ⟦ Univ j ⟧ i ;; I ↘ (I j) | InterpExt_Step A A0 PA : RPar.R A A0 -> ⟦ A0 ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PA where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) : PF = I j -> j < i -> ⟦ Univ j ⟧ i ;; I ↘ PF. Proof. hauto lq:on ctrs:InterpExt. Qed. Infix " (Tm 0 -> Prop) -> Prop by wf i lt := InterpUnivN i := @InterpExt i (fun j A => match j exists PA, InterpUnivN j A PA | right _ => False end). Arguments InterpUnivN . Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI h. elim : A PA /h. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA = ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI. apply propositional_extensionality. have : forall j, j < i -> I' j = I j by sfirstorder. firstorder using InterpExt_lt_impl. Qed. Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). Lemma InterpUnivN_nolt i : InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUnivN. extensionality A. extensionality PA. set I0 := (fun _ => _). set I1 := (fun _ => _). apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n): RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed. Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P (h : ⟦ TBind p A B ⟧ i ;; I ↘ P) : exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = BindSpace p PA PF. Proof. move E : (TBind p A B) h => T h. move : A B E. elim : T P / h => //. - hauto l:on. - move => A A0 PA hA hA0 hPi A1 B ?. subst. elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst. hauto lq:on ctrs:InterpExt use:RPar_substone. Qed. Lemma InterpExt_Univ_inv i I j P (h : ⟦ Univ j ⟧ i ;; I ↘ P) : P = I j /\ j < i. Proof. move : h. move E : (Univ j) => T h. move : j E. elim : T P /h => //. - hauto l:on. - hauto lq:on rew:off inv:RPar.R. Qed. Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)). Proof. move => h0 h1. apply InterpExt_Bind =>//. Qed. Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) -> ⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)). Proof. hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_cumulative i j I (A : Tm 0) PA : i < j -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ j ;; I ↘ PA. Proof. move => h h0. elim : A PA /h0; hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans. Qed. Lemma InterpUnivN_cumulative i (A : Tm 0) PA : ⟦ A ⟧ i ↘ PA -> forall j, i < j -> ⟦ A ⟧ j ↘ PA. Proof. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. Qed. Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) : RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. move : B. elim : A P / h; auto. - move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT. elim /RPar.inv : hT => //. move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst. apply InterpExt_Bind; auto => a PB hPB0. apply : ihPB; eauto. sfirstorder use:RPar.cong, RPar.refl. - hauto lq:on inv:RPar.R ctrs:InterpExt. - move => A B P h0 h1 ih1 C hC. have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC. hauto lq:on ctrs:InterpExt. Qed. Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) : RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed. Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : ⟦ B ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on ctrs:InterpExt. Qed. Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : ⟦ A ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed. Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed. Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : ⟦ B ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed. Lemma InterpExtInv i I (A : Tm 0) PA : ⟦ A ⟧ i ;; I ↘ PA -> exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA. Proof. move => h. elim : A PA /h. - move => p A B PA PF hPA _ hPF hPF0 _. exists (TBind p A B). repeat split => //=. apply rtc_refl. hauto l:on ctrs:InterpExt. - move => j ?. exists (Univ j). hauto l:on ctrs:InterpExt. - hauto lq:on ctrs:rtc. Qed. Lemma RPars_Pars (A B : Tm 0) : rtc RPar.R A B -> rtc Par.R A B. Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed. Lemma RPars_join (A B : Tm 0) : rtc RPar.R A B -> join A B. Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed. Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b : (forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) -> (forall a, PA a -> exists PB, PF a PB) -> (forall a, PA a -> exists PB0, PF0 a PB0) -> (BindSpace p PA PF b <-> BindSpace p PA PF0 b). Proof. rewrite /BindSpace => h hPF hPF0. case : p => /=. - rewrite /ProdSpace. split. move => h1 a PB ha hPF'. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. move => ? a PB ha. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. - rewrite /SumSpace. hauto lq:on rew:off. Qed. Lemma InterpExt_Join i I (A B : Tm 0) PA PB : ⟦ A ⟧ i ;; I ↘ PA -> ⟦ B ⟧ i ;; I ↘ PB -> join A B -> PA = PB. Proof. move => h. move : B PB. elim : A PA /h. - move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv. move => [B0 []]. case : B0 => //=. + move => p0 A0 B0 _ [hr hPi]. move /InterpExt_Bind_inv : hPi. move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst. move => hjoin. have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join. have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive. have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj. move => [? [h0 h1]]. subst. have ? : PA0 = PA by hauto l:on. subst. rewrite /ProdSpace. extensionality b. apply propositional_extensionality. apply bindspace_iff; eauto. move => a PB PB0 hPB hPB0. apply : ihPF; eauto. by apply join_substing. + move => j _. move => [h0 h1] h. have ? : join U (Univ j) by eauto using RPars_join. have : join (TBind p A B) (Univ j) by eauto using join_transitive. move => ?. exfalso. eauto using join_univ_pi_contra. - move => j ? B PB /InterpExtInv. move => [+ []]. case => //=. + move => p A0 B0 _ []. move /RPars_join => *. have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive. exfalso. eauto using join_univ_pi_contra. + move => m _ [/RPars_join h0 + h1]. have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive. subst. move /InterpExt_Univ_inv. firstorder. - move => A A0 PA h. have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once. eauto using join_transitive. Qed. Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P (h : ⟦ TBind p A B ⟧ i ↘ P) : exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop), ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\ P = BindSpace p PA PF. Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed. Lemma InterpUniv_Univ_inv i j P (h : ⟦ Univ j ⟧ i ↘ P) : P = (fun (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i. Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed. Lemma InterpExt_Functional i I (A B : Tm 0) PA PB : ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PB -> PA = PB. Proof. hauto use:InterpExt_Join, join_refl. Qed. Lemma InterpUniv_Functional i (A : Tm 0) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ A ⟧ i ↘ PB -> PA = PB. Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed. Lemma InterpUniv_Functional' i j A PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ A ⟧ j ↘ PB -> PA = PB. Proof. have : i = j \/ i < j \/ j < i by lia. qauto l:on use:InterpUnivN_cumulative, InterpUniv_Functional. Qed. Lemma InterpExt_Bind_inv_nopf i I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) : exists (PA : Tm 0 -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB). Proof. move /InterpExt_Bind_inv : h. intros (PA & PF & hPA & hPF & hPF' & ?); subst. exists PA. repeat split => //. - sfirstorder. - extensionality b. case : p => /=. + extensionality a. extensionality PB. extensionality ha. apply propositional_extensionality. split. * hecrush use:InterpExt_Functional. * sfirstorder. + rewrite /SumSpace. apply propositional_extensionality. split; hauto q:on use:InterpExt_Functional. Qed. Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) : exists (PA : Tm 0 -> Prop), ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\ P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB). Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_back_clos i I (A : Tm 0) PA : (forall j, forall a b, (RPar.R a b) -> I j b -> I j a) -> ⟦ A ⟧ i ;; I ↘ PA -> forall a b, (RPar.R a b) -> PA b -> PA a. Proof. move => hI h. elim : A PA /h. - move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr. case : p => //=. + have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a) by hauto lq:on ctrs:RPar.R use:RPar.refl. hauto lq:on rew:off unfold:ProdSpace. + hauto lq:on ctrs:rtc unfold:SumSpace. - eauto. - eauto. Qed. Lemma InterpUniv_back_clos i (A : Tm 0) PA : ⟦ A ⟧ i ↘ PA -> forall a b, (RPar.R a b) -> PA b -> PA a. Proof. simp InterpUniv. apply InterpExt_back_clos. hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star. Qed. Lemma InterpUniv_back_clos_star i (A : Tm 0) PA : ⟦ A ⟧ i ↘ PA -> forall a b, rtc RPar.R a b -> PA b -> PA a. Proof. move => h a b. induction 1=> //. hauto lq:on use:InterpUniv_back_clos. Qed. Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA, ⟦ subst_Tm ρ (Γ i) ⟧ m ↘ PA -> PA (ρ i). Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, ⟦ subst_Tm ρ A ⟧ m ↘ PA /\ PA (subst_Tm ρ a). Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70). (* Semantic context wellformedness *) Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j. Notation "⊨ Γ" := (SemWff Γ) (at level 70). Lemma ρ_ok_nil ρ : ρ_ok null ρ. Proof. rewrite /ρ_ok. inversion i; subst. Qed. Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A : ⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a -> ρ_ok Γ ρ -> ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) ((scons a ρ)). Proof. move => h0 h1 h2. rewrite /ρ_ok. move => j. destruct j as [j|]. - move => m PA0. asimpl => ?. firstorder. - move => m PA0. asimpl => h3. have ? : PA0 = PA by eauto using InterpUniv_Functional'. by subst. Qed. Definition renaming_ok {n m} (Γ : fin n -> Tm n) (Δ : fin m -> Tm m) (ξ : fin m -> fin n) := forall (i : fin m), ren_Tm ξ (Δ i) = Γ (ξ i). Lemma ρ_ok_renaming n m (Γ : fin n -> Tm n) ρ : forall (Δ : fin m -> Tm m) ξ, renaming_ok Γ Δ ξ -> ρ_ok Γ ρ -> ρ_ok Δ (funcomp ρ ξ). Proof. move => Δ ξ hξ hρ. rewrite /ρ_ok => i m' PA. rewrite /renaming_ok in hξ. rewrite /ρ_ok in hρ. move => h. rewrite /funcomp. apply hρ with (m := m'). move : h. rewrite -hξ. by asimpl. Qed. Lemma renaming_SemWt {n} Γ a A : Γ ⊨ a ∈ A -> forall {m} Δ (ξ : fin n -> fin m), renaming_ok Δ Γ ξ -> Δ ⊨ ren_Tm ξ a ∈ ren_Tm ξ A. Proof. rewrite /SemWt => h m Δ ξ hξ ρ hρ. have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming. hauto q:on solve+:(by asimpl). Qed.