From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat. Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Ltac2 spec_refl () := List.iter (fun a => match a with | (i, _, _) => let h := Control.hyp i in try (specialize $h with (1 := eq_refl)) end) (Control.hyps ()). Ltac spec_refl := ltac2:(spec_refl ()). (* Trying my best to not write C style module_funcname *) Module Par. Inductive R {n} : Tm n -> Tm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (Proj p (Abs a0)) (Abs (Proj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (Pair (Proj PL a1) (Proj PR a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) (* Bot is useful for making the prov function computable *) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Lemma refl n (a : Tm n) : R a a. elim : n /a; hauto ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : t = subst_Tm (scons b1 VarTm) a1 -> R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma AppEta' n (a0 a1 b : Tm n) : b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : match goal with | [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl | _ => qauto ctrs:R use:ProjPair' end. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. eapply AppAbs' with (a1 := subst_Tm (up_Tm_Tm ρ1) a1); eauto. by asimpl. hauto l:on use:renaming inv:option. - hauto lq:on rew:off ctrs:R. - hauto l:on inv:option use:renaming ctrs:R. - hauto lq:on use:ProjPair'. - move => n a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - sfirstorder. - hauto l:on inv:option ctrs:R use:renaming. - hauto q:on ctrs:R. - qauto l:on ctrs:R. - qauto l:on ctrs:R. - hauto l:on inv:option ctrs:R use:renaming. - sfirstorder. - sfirstorder. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b. Proof. move E : (ren_Tm ξ a) => u h. move : n ξ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=. move => c c0 [+ ?]. subst. case : c => //=. move => c [?]. subst. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=. move => []//= t t0 t1 [*]. subst. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [a0 [? ?]]. subst. eexists. split. apply AppEta; eauto. by asimpl. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply PairEta; eauto. by asimpl. - move => n i m ξ []//=. hauto l:on. - move => n a0 a1 ha iha m ξ []//= t [*]. subst. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. by apply ProjCong; eauto. by asimpl. - move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihB => [c0 [? ?]]. subst. eexists. split. by apply BindCong; eauto. by asimpl. - move => n n0 ξ []//=. hauto l:on. - move => n i n0 ξ []//=. hauto l:on. Qed. End Par. Module Pars. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : rtc Par.R a b -> rtc Par.R (ren_Tm ξ a) (ren_Tm ξ b). Proof. induction 1; hauto lq:on ctrs:rtc use:Par.renaming. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : rtc Par.R a b -> rtc Par.R (subst_Tm ρ a) (subst_Tm ρ b). induction 1; hauto l:on ctrs:rtc use:Par.substing. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : rtc Par.R (ren_Tm ξ a) b -> exists b0, rtc Par.R a b0 /\ ren_Tm ξ b0 = b. Proof. move E :(ren_Tm ξ a) => u h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /Par.antirenaming : h0. move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:Par.R use:Par.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma ProjCong n p (a0 a1 : Tm n) : rtc Par.R a0 a1 -> rtc Par.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma AbsCong n (a b : Tm (S n)) : rtc Par.R a b -> rtc Par.R (Abs a) (Abs b). Proof. solve_s. Qed. End Pars. Definition var_or_bot {n} (a : Tm n) := match a with | VarTm _ => true | Bot => true | _ => false end. (***************** Beta rules only ***********************) Module RPar. Inductive R {n} : Tm n -> Tm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (Proj p (Abs a0)) (Abs (Proj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma refl n (a : Tm n) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : t = subst_Tm (scons b1 VarTm) a1 -> R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a b : Tm (S n)) c d : R a b -> R c d -> R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b). Proof. move => h0 h1. apply morphing => //=. qauto l:on ctrs:R inv:option. Qed. Lemma var_or_bot_imp {n} (a b : Tm n) : var_or_bot a -> a = b -> ~~ var_or_bot b -> False. Proof. hauto lq:on inv:Tm. Qed. Lemma var_or_bot_up n m (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> (forall i, var_or_bot (up_Tm_Tm ρ i)). Proof. move => h /= [i|]. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. - sfirstorder. Qed. Local Ltac antiimp := qauto l:on use:var_or_bot_imp. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b. Proof. move E : (subst_Tm ρ a) => u hρ h. move : n ρ hρ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_bot_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ []//=; first by antiimp. move => []//=; first by antiimp. move => t t0 t1 [*]. subst. have {}/iha := hρ => iha. have {}/ihb := hρ => ihb. have {}/ihc := hρ => ihc. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 []//= t [*]; first by antiimp. subst. have /var_or_bot_up {}/iha := hρ => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n i m ρ hρ []//=. hauto l:on. - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_bot_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=; first by antiimp. move => ? t t0 [*]. subst. have {}/iha := (hρ) => iha. have /var_or_bot_up {}/ihB := (hρ) => ihB. spec_refl. move : iha => [b0 [? ?]]. move : ihB => [c0 [? ?]]. subst. eexists. split. by apply BindCong; eauto. by asimpl. - hauto q:on ctrs:R inv:Tm. - move => n i n0 ρ hρ []//=; first by antiimp. hauto l:on. Qed. End RPar. (***************** Beta rules only ***********************) Module RPar'. Inductive R {n} : Tm n -> Tm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma refl n (a : Tm n) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : t = subst_Tm (scons b1 VarTm) a1 -> R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a b : Tm (S n)) c d : R a b -> R c d -> R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b). Proof. move => h0 h1. apply morphing => //=. qauto l:on ctrs:R inv:option. Qed. Lemma var_or_bot_imp {n} (a b : Tm n) : var_or_bot a -> a = b -> ~~ var_or_bot b -> False. Proof. hauto lq:on inv:Tm. Qed. Lemma var_or_bot_up n m (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> (forall i, var_or_bot (up_Tm_Tm ρ i)). Proof. move => h /= [i|]. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. - sfirstorder. Qed. Local Ltac antiimp := qauto l:on use:var_or_bot_imp. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b. Proof. move E : (subst_Tm ρ a) => u hρ h. move : n ρ hρ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_bot_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n i m ρ hρ []//=. hauto l:on. - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_bot_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=; first by antiimp. move => ? t t0 [*]. subst. have {}/iha := (hρ) => iha. have /var_or_bot_up {}/ihB := (hρ) => ihB. spec_refl. move : iha => [b0 [? ?]]. move : ihB => [c0 [? ?]]. subst. eexists. split. by apply BindCong; eauto. by asimpl. - hauto q:on ctrs:R inv:Tm. - move => n i n0 ρ hρ []//=; first by antiimp. hauto l:on. Qed. End RPar'. Module ERed. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) | AppEta a : R a (Abs (App (ren_Tm shift a) (VarTm var_zero))) | PairEta a : R a (Pair (Proj PL a) (Proj PR a)) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (App a0 b) (App a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (App a b0) (App a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (Pair a0 b) (Pair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (Pair a b0) (Pair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong0 p A0 A1 B: R A0 A1 -> R (TBind p A0 B) (TBind p A1 B) | BindCong1 p A B0 B1: R B0 B1 -> R (TBind p A B0) (TBind p A B1). Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma AppEta' n a (u : Tm n) : u = (Abs (App (ren_Tm shift a) (VarTm var_zero))) -> R a u. Proof. move => ->. apply AppEta. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a m ξ. apply AppEta'. by asimpl. all : qauto ctrs:R. Qed. Lemma substing n m (a : Tm n) b (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. move => h. move : m ρ. elim : n a b / h => n. move => a m ρ /=. apply : AppEta'; eauto. by asimpl. all : hauto ctrs:R inv:option use:renaming. Qed. End ERed. Module EReds. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:ERed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : Tm (S n)) : rtc ERed.R a b -> rtc ERed.R (Abs a) (Abs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1 : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc ERed.R a0 a1 -> rtc ERed.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. End EReds. Module EPar. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (Pair (Proj PL a1) (Proj PR a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Lemma refl n (a : Tm n) : EPar.R a a. Proof. induction a; hauto lq:on ctrs:EPar.R. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a0 a1 ha iha m ξ /=. move /(_ _ ξ) /AppEta : iha. by asimpl. all : qauto ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma AppEta' n (a0 a1 b : Tm n) : b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => h. move : m ρ0 ρ1. elim : n a b / h => n. - move => a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n a0 a1 (b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> R (subst_Tm (scons b0 VarTm) a0) (subst_Tm (scons b1 VarTm) a1). Proof. move => h0 h1. apply morphing => //. hauto lq:on ctrs:R inv:option. Qed. End EPar. Module OExp. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) | AppEta a : R a (Abs (App (ren_Tm shift a) (VarTm var_zero))) | PairEta a : R a (Pair (Proj PL a) (Proj PR a)). Lemma merge n (t a b : Tm n) : rtc R a b -> EPar.R t a -> EPar.R t b. Proof. move => h. move : t. elim : a b /h. - eauto using EPar.refl. - hauto q:on ctrs:EPar.R inv:R. Qed. Lemma commutativity n (a b c : Tm n) : EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d. Proof. move => h. inversion 1; subst. - hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl. - hauto lq:on ctrs:EPar.R, R. Qed. Lemma commutativity0 n (a b c : Tm n) : EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d. Proof. move => + h. move : b. elim : a c / h. - sfirstorder. - hauto lq:on rew:off ctrs:rtc use:commutativity. Qed. End OExp. Local Ltac com_helper := split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming]. Module RPars. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar.R use:RPar.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : Tm (S n)) : rtc RPar.R a b -> rtc RPar.R (Abs a) (Abs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1 : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar.renaming, rtc_l. Qed. Lemma weakening n (a0 a1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_Tm shift a0) (ren_Tm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv n (a : Tm (S n)) b : rtc RPar.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar.R a a'. Proof. move E : (Abs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) : rtc RPar.R a b -> rtc RPar.R (subst_Tm ρ a) (subst_Tm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed. Lemma substing n (a b : Tm (S n)) c : rtc RPar.R a b -> rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> rtc RPar.R (subst_Tm ρ a) b -> exists b0, rtc RPar.R a b0 /\ subst_Tm ρ b0 = b. Proof. move E :(subst_Tm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars. Module RPars'. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar'.R use:RPar'.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : Tm (S n)) : rtc RPar'.R a b -> rtc RPar'.R (Abs a) (Abs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1 : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_Tm ξ a0) (ren_Tm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar'.renaming, rtc_l. Qed. Lemma weakening n (a0 a1 : Tm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_Tm shift a0) (ren_Tm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv n (a : Tm (S n)) b : rtc RPar'.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar'.R a a'. Proof. move E : (Abs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar'.R, rtc. Qed. Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) : rtc RPar'.R a b -> rtc RPar'.R (subst_Tm ρ a) (subst_Tm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar'.substing. Qed. Lemma substing n (a b : Tm (S n)) c : rtc RPar'.R a b -> rtc RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> rtc RPar'.R (subst_Tm ρ a) b -> exists b0, rtc RPar'.R a b0 /\ subst_Tm ρ b0 = b. Proof. move E :(subst_Tm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar'.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars'. Lemma Abs_EPar n a (b : Tm n) : EPar.R (Abs a) b -> (exists d, EPar.R a d /\ rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\ (exists d, EPar.R a d /\ forall p, rtc RPar.R (Proj p b) (Abs (Proj p d))). Proof. move E : (Abs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha b ?. subst. specialize iha with (1 := eq_refl). move : iha => [[d [ih0 ih1]] _]. split; exists d. + split => //. apply : rtc_l. apply RPar.AppAbs; eauto => //=. apply RPar.refl. by apply RPar.refl. move :ih1; substify; by asimpl. + split => // p. apply : rtc_l. apply : RPar.ProjAbs. by apply RPar.refl. eauto using RPars.ProjCong, RPars.AbsCong. - move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d [ih0 ih1]]]. split. + exists (Pair (Proj PL d) (Proj PR d)). split; first by apply EPar.PairEta. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. suff h : forall p, rtc RPar.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by sfirstorder use:RPars.PairCong. move => p. move /(_ p) /RPars.weakening in ih1. apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)). by eauto using RPars.AppCong, rtc_refl. apply relations.rtc_once => /=. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists d. repeat split => //. move => p. apply : rtc_l; eauto. hauto q:on use:RPar.ProjPair', RPar.refl. - move => n a0 a1 ha _ ? [*]. subst. split. + exists a1. split => //. apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists a1. split => // p. apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl. Qed. Lemma Pair_EPar n (a b c : Tm n) : EPar.R (Pair a b) c -> (forall p, exists d, rtc RPar.R (Proj p c) d /\ EPar.R (if p is PL then a else b) d) /\ (exists d0 d1, rtc RPar.R (App (ren_Tm shift c) (VarTm var_zero)) (Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\ EPar.R a d0 /\ EPar.R b d1). Proof. move E : (Pair a b) => u h. move : a b E. elim : n u c /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. split. + move => p. exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))). split. * apply : relations.rtc_transitive. ** apply RPars.ProjCong. apply RPars.AbsCong. eassumption. ** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. hauto l:on. * hauto lq:on use:EPar.AppEta'. + exists d0, d1. repeat split => //. apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=. by asimpl; renamify. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). split => [p|]. + move : iha => [/(_ p) [d [ih0 ih1]] _]. exists d. split=>//. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. set q := (X in rtc RPar.R X d). by have -> : q = Proj p a1 by hauto lq:on. + move :iha => [iha _]. move : (iha PL) => [d0 [ih0 ih0']]. move : (iha PR) => [d1 [ih1 ih1']] {iha}. exists d0, d1. apply RPars.weakening in ih0, ih1. repeat split => //=. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl. - move => n a0 a1 b0 b1 ha _ hb _ a b [*]. subst. split. + move => p. exists (if p is PL then a1 else b1). split. * apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl. * hauto lq:on rew:off. + exists a1, b1. split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl. split => //. Qed. Lemma commutativity0 n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => h. move : b1. elim : n a b0 / h. - move => n a b0 ha iha b1 hb. move : iha (hb) => /[apply]. move => [c [ih0 ih1]]. exists (Abs (App (ren_Tm shift c) (VarTm var_zero))). split. + hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0. move => [c [ih0 ih1]]. exists (Pair (Proj PL c) (Proj PR c)). split. + apply RPars.PairCong; by apply RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - hauto l:on ctrs:rtc inv:RPar.R. - move => n a0 a1 h ih b1. elim /RPar.inv => //= _. move => a2 a3 ? [*]. subst. hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong. - move => n a0 a1 b0 b1 ha iha hb ihb b2. elim /RPar.inv => //= _. + move => a2 a3 b3 b4 h0 h1 [*]. subst. move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]]. have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R. move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]]. exists (subst_Tm (scons b VarTm) d). split. (* By substitution *) * move /RPars.substing : ih2. move /(_ b). asimpl. eauto using relations.rtc_transitive, RPars.AppCong. (* By EPar morphing *) * by apply EPar.substing. + move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha => [c [ihc0 ihc1]]. move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]]. move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. move /RPars.substing : ih0. move /(_ d). asimpl => h. exists (Pair (App d0 d) (App d1 d)). split. hauto lq:on use:relations.rtc_transitive, RPars.AppCong. apply EPar.PairCong; by apply EPar.AppCong. + hauto lq:on ctrs:EPar.R use:RPars.AppCong. - hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong. - move => n p a b0 h0 ih0 b1. elim /RPar.inv => //= _. + move => ? a0 a1 h [*]. subst. move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]]. move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]]. exists (Abs (Proj p d)). qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive. + move => p0 a0 a1 b2 b3 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]]. move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _]. exists d. split => //. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong. - hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.BindCong. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. Qed. Lemma commutativity1 n (a b0 b1 : Tm n) : EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => + h. move : b0. elim : a b1 / h. - sfirstorder. - qauto l:on use:relations.rtc_transitive, commutativity0. Qed. Lemma commutativity n (a b0 b1 : Tm n) : rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. move => h. move : b1. elim : a b0 /h. - sfirstorder. - move => a0 a1 a2 + ha1 ih b1 +. move : commutativity1; repeat move/[apply]. hauto q:on ctrs:rtc. Qed. Lemma Abs_EPar' n a (b : Tm n) : EPar.R (Abs a) b -> (exists d, EPar.R a d /\ rtc OExp.R (Abs d) b). Proof. move E : (Abs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Proj_EPar' n p a (b : Tm n) : EPar.R (Proj p a) b -> (exists d, EPar.R a d /\ rtc OExp.R (Proj p d) b). Proof. move E : (Proj p a) => u h. move : p a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma App_EPar' n (a b u : Tm n) : EPar.R (App a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u). Proof. move E : (App a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bind_EPar' n p (a : Tm n) b u : EPar.R (TBind p a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (TBind p a0 b0) u). Proof. move E : (TBind p a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Pair_EPar' n (a b u : Tm n) : EPar.R (Pair a b) u -> exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u. Proof. move E : (Pair a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bot_EPar' n (u : Tm n) : EPar.R Bot u -> rtc OExp.R Bot u. move E : Bot => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Univ_EPar' n i (u : Tm n) : EPar.R (Univ i) u -> rtc OExp.R (Univ i) u. move E : (Univ i) => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma EPar_diamond n (c a1 b1 : Tm n) : EPar.R c a1 -> EPar.R c b1 -> exists d2, EPar.R a1 d2 /\ EPar.R b1 d2. Proof. move => h. move : b1. elim : n c a1 / h. - move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]]. exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))). hauto lq:on ctrs:EPar.R use:EPar.renaming. - hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on use:EPar.refl. - move => n a0 a1 ha iha a2. move /Abs_EPar' => [d [hd0 hd1]]. move : iha hd0; repeat move/[apply]. move => [d2 [h0 h1]]. have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong. move : OExp.commutativity0 hd1; repeat move/[apply]. move => [d1 [hd1 hd2]]. exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (App a2 b2)(App a3 b3) by hauto l:on use:EPar.AppCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (Pair a2 b2)(Pair a3 b3) by hauto l:on use:EPar.PairCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n p a0 a1 ha iha b. move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}. have : EPar.R (Proj p d) (Proj p d2) by hauto l:on use:EPar.ProjCong. move : OExp.commutativity0 h1; repeat move/[apply]. move => [d1 h1]. exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n p a0 a1 b0 b1 ha iha hb ihb c. move /Bind_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (TBind p a2 b2)(TBind p a3 b3) by hauto l:on use:EPar.BindCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - qauto use:Bot_EPar', EPar.refl. - qauto use:Univ_EPar', EPar.refl. Qed. Function tstar {n} (a : Tm n) := match a with | VarTm i => a | Abs a => Abs (tstar a) | App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a) | App (Pair a b) c => Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c)) | App a b => App (tstar a) (tstar b) | Pair a b => Pair (tstar a) (tstar b) | Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b) | Proj p (Abs a) => (Abs (Proj p (tstar a))) | Proj p a => Proj p (tstar a) | TBind p a b => TBind p (tstar a) (tstar b) | Bot => Bot | Univ i => Univ i end. Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a). Proof. apply tstar_ind => {n a}. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. Qed. Function tstar' {n} (a : Tm n) := match a with | VarTm i => a | Abs a => Abs (tstar' a) | App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) | App a b => App (tstar' a) (tstar' b) | Pair a b => Pair (tstar' a) (tstar' b) | Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) | Proj p a => Proj p (tstar' a) | TBind p a b => TBind p (tstar' a) (tstar' b) | Bot => Bot | Univ i => Univ i end. Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). Proof. apply tstar'_ind => {n a}. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. Qed. Lemma RPar_diamond n (c a1 b1 : Tm n) : RPar.R c a1 -> RPar.R c b1 -> exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. Proof. hauto l:on use:RPar_triangle. Qed. Lemma RPar'_diamond n (c a1 b1 : Tm n) : RPar'.R c a1 -> RPar'.R c b1 -> exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. Proof. hauto l:on use:RPar'_triangle. Qed. Lemma RPar_confluent n (c a1 b1 : Tm n) : rtc RPar.R c a1 -> rtc RPar.R c b1 -> exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, RPar_diamond. Qed. Lemma EPar_confluent n (c a1 b1 : Tm n) : rtc EPar.R c a1 -> rtc EPar.R c b1 -> exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, EPar_diamond. Qed. Fixpoint depth_tm {n} (a : Tm n) := match a with | VarTm _ => 1 | TBind _ A B => 1 + max (depth_tm A) (depth_tm B) | Abs a => 1 + depth_tm a | App a b => 1 + max (depth_tm a) (depth_tm b) | Proj p a => 1 + depth_tm a | Pair a b => 1 + max (depth_tm a) (depth_tm b) | Bot => 1 | Univ i => 1 end. Lemma depth_ren n m (ξ: fin n -> fin m) a : depth_tm a = depth_tm (ren_Tm ξ a). Proof. move : m ξ. elim : n / a; scongruence. Qed. Lemma depth_subst n m (ρ : fin n -> Tm m) a : (forall i, depth_tm (ρ i) = 1) -> depth_tm a = depth_tm (subst_Tm ρ a). Proof. move : m ρ. elim : n / a. - sfirstorder. - move => n a iha m ρ hρ. simpl. f_equal. apply iha. destruct i as [i|]. + simpl. by rewrite -depth_ren. + by simpl. - hauto lq:on rew:off. - hauto lq:on rew:off. - hauto lq:on rew:off. - move => n p a iha b ihb m ρ hρ. simpl. f_equal. f_equal. by apply iha. apply ihb. destruct i as [i|]. + simpl. by rewrite -depth_ren. + by simpl. - sfirstorder. - sfirstorder. Qed. Lemma depth_subst_bool n (a : Tm (S n)) : depth_tm a = depth_tm (subst_Tm (scons Bot VarTm) a). Proof. apply depth_subst. destruct i as [i|] => //=. Qed. Local Ltac prov_tac := sfirstorder use:depth_ren. Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool. Definition prov_bind {n} p0 A0 B0 (a : Tm n) := match a with | TBind p A B => p = p0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | _ => False end. Definition prov_univ {n} i0 (a : Tm n) := match a with | Univ i => i = i0 | _ => False end. Inductive prov {n} : Tm n -> Tm n -> Prop := | P_Bind p A A0 B B0 : rtc Par.R A A0 -> rtc Par.R B B0 -> prov (TBind p A B) (TBind p A0 B0) | P_Abs h a : (forall b, prov h (subst_Tm (scons b VarTm) a)) -> prov h (Abs a) | P_App h a b : prov h a -> prov h (App a b) | P_Pair h a b : prov h a -> prov h b -> prov h (Pair a b) | P_Proj h p a : prov h a -> prov h (Proj p a) | P_Bot : prov Bot Bot | P_Var i : prov (VarTm i) (VarTm i) | P_Univ i : prov (Univ i) (Univ i). Lemma ERed_EPar n (a b : Tm n) : ERed.R a b -> EPar.R a b. Proof. induction 1; hauto lq:on ctrs:EPar.R use:EPar.refl. Qed. Lemma EPar_ERed n (a b : Tm n) : EPar.R a b -> rtc ERed.R a b. Proof. move => h. elim : n a b /h. - eauto using rtc_r, ERed.AppEta. - eauto using rtc_r, ERed.PairEta. - auto using rtc_refl. - eauto using EReds.AbsCong. - eauto using EReds.AppCong. - eauto using EReds.PairCong. - eauto using EReds.ProjCong. - eauto using EReds.BindCong. - auto using rtc_refl. - auto using rtc_refl. Qed. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; qauto ctrs:Par.R. Qed. Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; hauto lq:on ctrs:Par.R. Qed. Lemma rtc_idem n (R : Tm n -> Tm n -> Prop) (a b : Tm n) : rtc (rtc R) a b -> rtc R a b. Proof. induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r. Qed. Lemma EPars_EReds {n} (a b : Tm n) : rtc EPar.R a b <-> rtc ERed.R a b. Proof. sfirstorder use:@relations.rtc_subrel, EPar_ERed, rtc_idem, ERed_EPar. Qed. Lemma prov_rpar n (u : Tm n) a b : prov u a -> RPar.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. - qauto l:on ctrs:prov inv:RPar.R use:@rtc_r, RPar_Par. - hauto lq:on ctrs:prov inv:RPar.R use:RPar.substing. - move => h a b ha iha b0. elim /RPar.inv => //= _. + move => a0 a1 b1 b2 h0 h1 [*]. subst. have {}iha : prov h (Abs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov use:RPar.substing. + move => a0 a1 b1 b2 c0 c1. move => h0 h1 h2 [*]. subst. have {}iha : prov h (Pair a1 b2) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - move => h p a ha iha b. elim /RPar.inv => //= _. + move => p0 a0 a1 h0 [*]. subst. have {iha} : prov h (Abs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on ctrs:prov inv:prov use:RPar.substing. + move => p0 a0 a1 b0 b1 h0 h1 [*]. subst. have {iha} : prov h (Pair a1 b1) by hauto lq:on ctrs:RPar.R. qauto l:on inv:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. Qed. Lemma prov_lam n (u : Tm n) a : prov u a <-> prov u (Abs (App (ren_Tm shift a) (VarTm var_zero))). Proof. split. move => h. constructor. move => b. asimpl. by constructor. inversion 1; subst. specialize H2 with (b := Bot). move : H2. asimpl. inversion 1; subst. done. Qed. Lemma prov_pair n (u : Tm n) a : prov u a <-> prov u (Pair (Proj PL a) (Proj PR a)). Proof. hauto lq:on inv:prov ctrs:prov. Qed. Lemma prov_ered n (u : Tm n) a b : prov u a -> ERed.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. - move => p A A0 B B0 hA hB b. elim /ERed.inv => // _. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + qauto l:on ctrs:prov use:@rtc_r, ERed_EPar, EPar_Par. + qauto l:on ctrs:prov use:@rtc_r, ERed_EPar, EPar_Par. - move => h a ha iha b. elim /ERed.inv => // _. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov use:ERed.substing. - hauto lq:on inv:ERed.R, prov ctrs:prov. - move => h a b ha iha hb ihb b0. elim /ERed.inv => //_. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. Qed. Lemma prov_ereds n (u : Tm n) a b : prov u a -> rtc ERed.R a b -> prov u b. Proof. induction 2; sfirstorder use:prov_ered. Qed. Fixpoint extract {n} (a : Tm n) : Tm n := match a with | TBind p A B => TBind p A B | Abs a => subst_Tm (scons Bot VarTm) (extract a) | App a b => extract a | Pair a b => extract a | Proj p a => extract a | Bot => Bot | VarTm i => VarTm i | Univ i => Univ i end. Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) : extract (ren_Tm ξ a) = ren_Tm ξ (extract a). Proof. move : m ξ. elim : n/a. - sfirstorder. - move => n a ih m ξ /=. rewrite ih. by asimpl. - hauto q:on. - hauto q:on. - hauto q:on. - hauto q:on. - sfirstorder. - sfirstorder. Qed. Lemma ren_morphing n m (a : Tm n) (ρ : fin n -> Tm m) : (forall i, ρ i = extract (ρ i)) -> extract (subst_Tm ρ a) = subst_Tm ρ (extract a). Proof. move : m ρ. elim : n /a => n //=. move => a ha m ρ hi. rewrite ha. - destruct i as [i|] => //. rewrite ren_extract. rewrite -hi. by asimpl. - by asimpl. Qed. Lemma ren_subst_bot n (a : Tm (S n)) : extract (subst_Tm (scons Bot VarTm) a) = subst_Tm (scons Bot VarTm) (extract a). Proof. apply ren_morphing. destruct i as [i|] => //=. Qed. Definition prov_extract_spec {n} u (a : Tm n) := match u with | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | Univ i => extract a = Univ i | VarTm i => extract a = VarTm i | Bot => extract a = Bot | _ => True end. Lemma prov_extract n u (a : Tm n) : prov u a -> prov_extract_spec u a. Proof. move => h. elim : u a /h. - sfirstorder. - move => h a ha ih. case : h ha ih => //=. + move => i ha ih. move /(_ Bot) in ih. rewrite -ih. by rewrite ren_subst_bot. + move => p A B h ih. move /(_ Bot) : ih => [A0][B0][h0][h1]h2. rewrite ren_subst_bot in h0. rewrite h0. eauto. + move => _ /(_ Bot). by rewrite ren_subst_bot. + move => i h /(_ Bot). by rewrite ren_subst_bot => ->. - hauto lq:on. - hauto lq:on. - hauto lq:on. - sfirstorder. - sfirstorder. - sfirstorder. Qed. Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b := R0 a b \/ R1 a b. Module ERPar. Definition R {n} (a b : Tm n) := union RPar.R EPar.R a b. Lemma RPar {n} (a b : Tm n) : RPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma EPar {n} (a b : Tm n) : EPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma refl {n} ( a : Tm n) : ERPar.R a a. Proof. sfirstorder use:RPar.refl, EPar.refl. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : R a0 a1 -> rtc R (Proj p a0) (Proj p a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.ProjCong. - move => h. apply rtc_once. right. by apply EPar.ProjCong. Qed. Lemma AbsCong n (a0 a1 : Tm (S n)) : R a0 a1 -> rtc R (Abs a0) (Abs a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.AbsCong. - move => h. apply rtc_once. right. by apply EPar.AbsCong. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> rtc R (App a0 b0) (App a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.AppCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - sfirstorder use:EPar.AppCong, @rtc_once. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1: R a0 a1 -> R b0 b1 -> rtc R (TBind p a0 b0) (TBind p a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.BindCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.BindCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.BindCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.BindCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.BindCong, EPar.refl. - sfirstorder use:EPar.BindCong, @rtc_once. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> rtc R (Pair a0 b0) (Pair a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.PairCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - sfirstorder use:EPar.PairCong, @rtc_once. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. sfirstorder use:EPar.renaming, RPar.renaming. Qed. End ERPar. Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong ERPar.BindCong : erpar. Module ERPars. #[local]Ltac solve_s_rec := move => *; eapply relations.rtc_transitive; eauto; hauto lq:on db:erpar. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma AbsCong n (a0 a1 : Tm (S n)) : rtc ERPar.R a0 a1 -> rtc ERPar.R (Abs a0) (Abs a1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1: rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : rtc ERPar.R a0 a1 -> rtc ERPar.R (ren_Tm ξ a0) (ren_Tm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using ERPar.renaming, rtc_l. Qed. End ERPars. Lemma ERPar_Par n (a b : Tm n) : ERPar.R a b -> Par.R a b. Proof. sfirstorder use:EPar_Par, RPar_Par. Qed. Lemma Par_ERPar n (a b : Tm n) : Par.R a b -> rtc ERPar.R a b. Proof. move => h. elim : n a b /h. - move => n a0 a1 b0 b1 ha iha hb ihb. suff ? : rtc ERPar.R (App (Abs a0) b0) (App (Abs a1) b1). apply : relations.rtc_transitive; eauto. apply rtc_once. apply ERPar.RPar. by apply RPar.AppAbs; eauto using RPar.refl. eauto using ERPars.AppCong,ERPars.AbsCong. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc. apply : rtc_l. apply ERPar.RPar. apply RPar.AppPair; eauto using RPar.refl. sfirstorder use:ERPars.AppCong, ERPars.PairCong. - move => n p a0 a1 ha iha. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl. sfirstorder use:ERPars.AbsCong, ERPars.ProjCong. - move => n p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjPair; eauto using RPar.refl. hauto lq:on. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.AppEta; eauto using EPar.refl. hauto lq:on ctrs:rtc use:ERPars.AppCong, ERPars.AbsCong, ERPars.renaming. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl. sfirstorder use:ERPars.PairCong, ERPars.ProjCong. - sfirstorder. - sfirstorder use:ERPars.AbsCong. - sfirstorder use:ERPars.AppCong. - sfirstorder use:ERPars.PairCong. - sfirstorder use:ERPars.ProjCong. - sfirstorder use:ERPars.BindCong. - sfirstorder. - sfirstorder. Qed. Lemma Pars_ERPar n (a b : Tm n) : rtc Par.R a b -> rtc ERPar.R a b. Proof. induction 1; hauto l:on use:Par_ERPar, @relations.rtc_transitive. Qed. Lemma Par_ERPar_iff n (a b : Tm n) : rtc Par.R a b <-> rtc ERPar.R a b. Proof. split. sfirstorder use:Pars_ERPar, @relations.rtc_subrel. sfirstorder use:ERPar_Par, @relations.rtc_subrel. Qed. Lemma RPar_ERPar n (a b : Tm n) : rtc RPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Lemma EPar_ERPar n (a b : Tm n) : rtc EPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Module Type HindleyRosen. Parameter A : nat -> Type. Parameter R0 R1 : forall n, A n -> A n -> Prop. Axiom diamond_R0 : forall n, relations.diamond (R0 n). Axiom diamond_R1 : forall n, relations.diamond (R1 n). Axiom commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. End HindleyRosen. Module HindleyRosenFacts (M : HindleyRosen). Import M. Lemma R0_comm : forall n a b c, R0 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R0 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : diamond_R0 h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma R1_comm : forall n a b c, R1 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R1 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : diamond_R1 h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma U_comm : forall n a b c, (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ (union (R0 n) (R1 n)) c d. Proof. hauto lq:on use:R0_comm, R1_comm. Qed. Lemma U_comms : forall n a b c, rtc (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ rtc (union (R0 n) (R1 n)) c d. Proof. move => n a b + h. elim : a b /h. - sfirstorder. - hecrush ctrs:rtc use:U_comm. Qed. End HindleyRosenFacts. Module HindleyRosenER <: HindleyRosen. Definition A := Tm. Definition R0 n := rtc (@RPar.R n). Definition R1 n := rtc (@EPar.R n). Lemma diamond_R0 : forall n, relations.diamond (R0 n). sfirstorder use:RPar_confluent. Qed. Lemma diamond_R1 : forall n, relations.diamond (R1 n). sfirstorder use:EPar_confluent. Qed. Lemma commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. Proof. hauto l:on use:commutativity. Qed. End HindleyRosenER. Module ERFacts := HindleyRosenFacts HindleyRosenER. Lemma rtc_union n (a b : Tm n) : rtc (union RPar.R EPar.R) a b <-> rtc (union (rtc RPar.R) (rtc EPar.R)) a b. Proof. split; first by induction 1; hauto lq:on ctrs:rtc. move => h. elim :a b /h. - sfirstorder. - move => a0 a1 a2. case. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. Qed. Lemma prov_erpar n (u : Tm n) a b : prov u a -> ERPar.R a b -> prov u b. Proof. move => h []. - sfirstorder use:prov_rpar. - move /EPar_ERed. sfirstorder use:prov_ereds. Qed. Lemma prov_pars n (u : Tm n) a b : prov u a -> rtc Par.R a b -> prov u b. Proof. move => h /Pars_ERPar. move => h0. move : h. elim : a b /h0. - done. - hauto lq:on use:prov_erpar. Qed. Lemma Par_confluent n (a b c : Tm n) : rtc Par.R a b -> rtc Par.R a c -> exists d, rtc Par.R b d /\ rtc Par.R c d. Proof. move : n a b c. suff : forall (n : nat) (a b c : Tm n), rtc ERPar.R a b -> rtc ERPar.R a c -> exists d : Tm n, rtc ERPar.R b d /\ rtc ERPar.R c d. move => h n a b c h0 h1. apply Par_ERPar_iff in h0, h1. move : h h0 h1; repeat move/[apply]. hauto lq:on use:Par_ERPar_iff. have h := ERFacts.U_comms. move => n a b c. rewrite /HindleyRosenER.R0 /HindleyRosenER.R1 in h. specialize h with (n := n). rewrite /HindleyRosenER.A in h. rewrite /ERPar.R. have eq : (fun a0 b0 : Tm n => union RPar.R EPar.R a0 b0) = union RPar.R EPar.R by reflexivity. rewrite !{}eq. move /rtc_union => + /rtc_union. move : h; repeat move/[apply]. hauto lq:on use:rtc_union. Qed. Lemma pars_univ_inv n i (c : Tm n) : rtc Par.R (Univ i) c -> extract c = Univ i. Proof. have : prov (Univ i) (Univ i : Tm n) by sfirstorder. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_pi_inv n p (A : Tm n) B C : rtc Par.R (TBind p A B) C -> exists A0 B0, extract C = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. Proof. have : prov (TBind p A B) (TBind p A B) by hauto lq:on ctrs:prov, rtc. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_var_inv n (i : fin n) C : rtc Par.R (VarTm i) C -> extract C = VarTm i. Proof. have : prov (VarTm i) (VarTm i) by hauto lq:on ctrs:prov, rtc. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_univ_inj n i j (C : Tm n) : rtc Par.R (Univ i) C -> rtc Par.R (Univ j) C -> i = j. Proof. sauto l:on use:pars_univ_inv. Qed. Lemma pars_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 C : rtc Par.R (TBind p0 A0 B0) C -> rtc Par.R (TBind p1 A1 B1) C -> exists A2 B2, p1 = p0 /\ rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ rtc Par.R B0 B2 /\ rtc Par.R B1 B2. Proof. move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]]. move /pars_pi_inv => [A3 [B3 [? [h2 h3]]]]. exists A2, B2. hauto l:on. Qed. Definition join {n} (a b : Tm n) := exists c, rtc Par.R a c /\ rtc Par.R b c. Lemma join_transitive n (a b c : Tm n) : join a b -> join b c -> join a c. Proof. rewrite /join. move => [ab [h0 h1]] [bc [h2 h3]]. move : Par_confluent h1 h2; repeat move/[apply]. move => [abc [h4 h5]]. eauto using relations.rtc_transitive. Qed. Lemma join_symmetric n (a b : Tm n) : join a b -> join b a. Proof. sfirstorder unfold:join. Qed. Lemma join_refl n (a : Tm n) : join a a. Proof. hauto lq:on ctrs:rtc unfold:join. Qed. Lemma join_univ_inj n i j : join (Univ i : Tm n) (Univ j) -> i = j. Proof. sfirstorder use:pars_univ_inj. Qed. Lemma join_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 : join (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ join A0 A1 /\ join B0 B1. Proof. move => [c []]. move : pars_pi_inj; repeat move/[apply]. sfirstorder unfold:join. Qed. Lemma join_univ_pi_contra n p (A : Tm n) B i : join (TBind p A B) (Univ i) -> False. Proof. rewrite /join. move => [c [h0 h1]]. move /pars_univ_inv : h1. move /pars_pi_inv : h0. hauto l:on. Qed. Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) : join a b -> join (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto lq:on unfold:join use:Pars.substing. Qed. Fixpoint ne {n} (a : Tm n) := match a with | VarTm i => true | TBind _ A B => false | Bot => true | App a b => ne a && nf b | Abs a => false | Univ _ => false | Proj _ a => ne a | Pair _ _ => false end with nf {n} (a : Tm n) := match a with | VarTm i => true | TBind _ A B => nf A && nf B | Bot => true | App a b => ne a && nf b | Abs a => nf a | Univ _ => true | Proj _ a => ne a | Pair a b => nf a && nf b end. Lemma ne_nf n a : @ne n a -> nf a. Proof. elim : a => //=. Qed. Definition wn {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ nf b. Definition wne {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ ne b. (* Weakly neutral implies weakly normal *) Lemma wne_wn n a : @wne n a -> wn a. Proof. sfirstorder use:ne_nf. Qed. (* Normal implies weakly normal *) Lemma nf_wn n v : @nf n v -> wn v. Proof. sfirstorder ctrs:rtc. Qed. Lemma nf_refl n (a b : Tm n) (h : RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Proof. elim : a b /h => //=; solve [hauto b:on]. Qed. Lemma ne_nf_ren n m (a : Tm n) (ξ : fin n -> fin m) : (ne a <-> ne (ren_Tm ξ a)) /\ (nf a <-> nf (ren_Tm ξ a)). Proof. move : m ξ. elim : n / a => //=; solve [hauto b:on]. Qed. Lemma wne_app n (a b : Tm n) : wne a -> wn b -> wne (App a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (App a0 b0). hauto b:on drew:off use:RPars'.AppCong. Qed. Lemma wn_abs n a (h : wn a) : @wn n (Abs a). Proof. move : h => [v [? ?]]. exists (Abs v). eauto using RPars'.AbsCong. Qed. Lemma wn_bind n p A B : wn A -> wn B -> wn (@TBind n p A B). Proof. move => [A0 [? ?]] [B0 [? ?]]. exists (TBind p A0 B0). hauto lqb:on use:RPars'.BindCong. Qed. Lemma wn_pair n (a b : Tm n) : wn a -> wn b -> wn (Pair a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (Pair a0 b0). hauto lqb:on use:RPars'.PairCong. Qed. Lemma wne_proj n p (a : Tm n) : wne a -> wne (Proj p a). Proof. move => [a0 [? ?]]. exists (Proj p a0). hauto lqb:on use:RPars'.ProjCong. Qed. Create HintDb nfne. #[export]Hint Resolve nf_wn ne_nf wne_wn nf_refl : nfne. Lemma ne_nf_antiren n m (a : Tm n) (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> (ne (subst_Tm ρ a) -> ne a) /\ (nf (subst_Tm ρ a) -> nf a). Proof. move : m ρ. elim : n / a => //; hauto b:on drew:off use:RPar.var_or_bot_up. Qed. Lemma wn_antirenaming n m a (ρ : fin n -> Tm m) : (forall i, var_or_bot (ρ i)) -> wn (subst_Tm ρ a) -> wn a. Proof. rewrite /wn => hρ. move => [v [rv nfv]]. move /RPars'.antirenaming : rv. move /(_ hρ) => [b [hb ?]]. subst. exists b. split => //=. move : nfv. by eapply ne_nf_antiren. Qed. Lemma ext_wn n (a : Tm n) : wn (App a Bot) -> wn a. Proof. move E : (App a Bot) => a0 [v [hr hv]]. move : a E. move : hv. elim : a0 v / hr. - hauto q:on inv:Tm ctrs:rtc b:on db: nfne. - move => a0 a1 a2 hr0 hr1 ih hnfa2. move /(_ hnfa2) in ih. move => a. case : a0 hr0=>// => b0 b1. elim /RPar'.inv=>// _. + move => a0 a3 b2 b3 ? ? [? ?] ? [? ?]. subst. have ? : b3 = Bot by hauto lq:on inv:RPar'.R. subst. suff : wn (Abs a3) by hauto lq:on ctrs:RPar'.R, rtc unfold:wn. have : wn (subst_Tm (scons Bot VarTm) a3) by sfirstorder. move => h. apply wn_abs. move : h. apply wn_antirenaming. hauto lq:on rew:off inv:option. + hauto q:on inv:RPar'.R ctrs:rtc b:on. Qed. Module Join. Lemma ProjCong p n (a0 a1 : Tm n) : join a0 a1 -> join (Proj p a0) (Proj p a1). Proof. hauto lq:on use:Pars.ProjCong unfold:join. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : join a0 a1 -> join b0 b1 -> join (Pair a0 b0) (Pair a1 b1). Proof. hauto lq:on use:Pars.PairCong unfold:join. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : join a0 a1 -> join b0 b1 -> join (App a0 b0) (App a1 b1). Proof. hauto lq:on use:Pars.AppCong. Qed. Lemma AbsCong n (a b : Tm (S n)) : join a b -> join (Abs a) (Abs b). Proof. hauto lq:on use:Pars.AbsCong. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : join a b -> join (ren_Tm ξ a) (ren_Tm ξ b). Proof. induction 1; hauto lq:on use:Pars.renaming. Qed. Lemma weakening n (a b : Tm n) : join a b -> join (ren_Tm shift a) (ren_Tm shift b). Proof. apply renaming. Qed. Lemma FromPar n (a b : Tm n) : Par.R a b -> join a b. Proof. hauto lq:on ctrs:rtc use:rtc_once. Qed. End Join. Lemma abs_eq n a (b : Tm n) : join (Abs a) b <-> join a (App (ren_Tm shift b) (VarTm var_zero)). Proof. split. - move => /Join.weakening h. have {h} : join (App (ren_Tm shift (Abs a)) (VarTm var_zero)) (App (ren_Tm shift b) (VarTm var_zero)) by hauto l:on use:Join.AppCong, join_refl. simpl. move => ?. apply : join_transitive; eauto. apply join_symmetric. apply Join.FromPar. apply : Par.AppAbs'; eauto using Par.refl. by asimpl. - move /Join.AbsCong. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. apply Par.AppEta. apply Par.refl. Qed. Lemma pair_eq n (a0 a1 b : Tm n) : join (Pair a0 a1) b <-> join a0 (Proj PL b) /\ join a1 (Proj PR b). Proof. split. - move => h. have /Join.ProjCong {}h := h. have h0 : forall p, join (if p is PL then a0 else a1) (Proj p (Pair a0 a1)) by hauto lq:on use:join_symmetric, Join.FromPar, Par.ProjPair', Par.refl. hauto lq:on rew:off use:join_transitive, join_symmetric. - move => [h0 h1]. move : h0 h1. move : Join.PairCong; repeat move/[apply]. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. hauto lq:on ctrs:Par.R use:Par.refl. Qed. Lemma join_pair_inj n (a0 a1 b0 b1 : Tm n) : join (Pair a0 a1) (Pair b0 b1) <-> join a0 b0 /\ join a1 b1. Proof. split; last by hauto lq:on use:Join.PairCong. move /pair_eq => [h0 h1]. have : join (Proj PL (Pair b0 b1)) b0 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. have : join (Proj PR (Pair b0 b1)) b1 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. eauto using join_transitive. Qed.