(** * Autosubst Header for Unnamed Syntax Version: December 11, 2019. *) (* Adrian: I changed this library a bit to work better with my generated code. 1. I use nat directly instead of defining fin to be nat and using Some/None as S/O 2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*) Require Import core. Require Import Setoid Morphisms Relation_Definitions. Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y := match p with eq_refl => eq_refl end. Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y := match q with eq_refl => match p with eq_refl => eq_refl end end. (** ** Primitives of the Sigma Calculus. *) Definition shift := S. Definition var_zero := 0. Definition id {X} := @Datatypes.id X. Definition scons {X: Type} (x : X) (xi : nat -> X) := fun n => match n with | 0 => x | S n => xi n end. #[ export ] Hint Opaque scons : rewrite. (** ** Type Class Instances for Notation Required to make notation work. *) (** *** Type classes for renamings. *) Class Ren1 (X1 : Type) (Y Z : Type) := ren1 : X1 -> Y -> Z. Class Ren2 (X1 X2 : Type) (Y Z : Type) := ren2 : X1 -> X2 -> Y -> Z. Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) := ren3 : X1 -> X2 -> X3 -> Y -> Z. Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) := ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z. Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) := ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z. Module RenNotations. Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope. Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope. Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope. Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope. Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope. Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope. Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope. End RenNotations. (** *** Type Classes for Substiution *) Class Subst1 (X1 : Type) (Y Z: Type) := subst1 : X1 -> Y -> Z. Class Subst2 (X1 X2 : Type) (Y Z: Type) := subst2 : X1 -> X2 -> Y -> Z. Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) := subst3 : X1 -> X2 -> X3 -> Y -> Z. Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) := subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z. Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) := subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z. Module SubstNotations. Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope. Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope. End SubstNotations. (** *** Type Class for Variables *) Class Var X Y := ids : X -> Y. #[export] Instance idsRen : Var nat nat := id. (** ** Proofs for the substitution primitives. *) Arguments funcomp {X Y Z} (g)%fscope (f)%fscope. Module CombineNotations. Notation "f >> g" := (funcomp g f) (at level 50) : fscope. Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope. #[ global ] Open Scope fscope. #[ global ] Open Scope subst_scope. End CombineNotations. Import CombineNotations. (** A generic lifting of a renaming. *) Definition up_ren (xi : nat -> nat) := 0 .: (xi >> S). (** A generic proof that lifting of renamings composes. *) Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) : forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x. Proof. intros [|x]. - reflexivity. - unfold up_ren. cbn. unfold funcomp. f_equal. apply E. Qed. (** Eta laws. *) Lemma scons_eta' {T} (f : nat -> T) : pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f. Proof. intros x. destruct x; reflexivity. Qed. Lemma scons_eta_id' : pointwise_relation _ eq (var_zero .: shift) id. Proof. intros x. destruct x; reflexivity. Qed. Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) : pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)). Proof. intros x. destruct x; reflexivity. Qed. (* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *) #[export] Instance scons_morphism {X: Type} : Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X). Proof. intros ? t -> sigma tau H. intros [|x]. cbn. reflexivity. apply H. Qed. #[export] Instance scons_morphism2 {X: Type} : Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X). Proof. intros ? t -> sigma tau H ? x ->. destruct x as [|x]. cbn. reflexivity. apply H. Qed. (** ** Generic lifting of an allfv predicate *) Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p. (** ** Notations for unscoped syntax *) Module UnscopedNotations. Include RenNotations. Include SubstNotations. Include CombineNotations. (* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *) Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope. Notation "↑" := (shift) : subst_scope. #[global] Open Scope fscope. #[global] Open Scope subst_scope. End UnscopedNotations. (** ** Tactics for unscoped syntax *) (** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *) Tactic Notation "auto_case" tactic(t) := (match goal with | [|- forall (i : nat), _] => intros []; t end). (** Generic fsimpl tactic: simplifies the above primitives in a goal. *) Ltac fsimpl := repeat match goal with | [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *) | [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *) | [|- context [id ?s]] => change (id s) with s | [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) | [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v | [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v | [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n) | [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *) | [|- context[var_zero]] => change var_zero with 0 | [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f) | [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta' | [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s) | [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s) (* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *) | [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce | [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce end.