From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat. Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Ltac2 spec_refl () := List.iter (fun a => match a with | (i, _, _) => let h := Control.hyp i in try (specialize $h with (1 := eq_refl)) end) (Control.hyps ()). Ltac spec_refl := ltac2:(spec_refl ()). (* Trying my best to not write C style module_funcname *) Module Par. Inductive R {n} : Tm n -> Tm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (Proj p (Abs a0)) (Abs (Proj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (Pair (Proj PL a1) (Proj PR a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) (* Bot is useful for making the prov function computable *) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Lemma refl n (a : Tm n) : R a a. elim : n /a; hauto ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : t = subst_Tm (scons b1 VarTm) a1 -> R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma AppEta' n (a0 a1 b : Tm n) : b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : match goal with | [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl | _ => qauto ctrs:R use:ProjPair' end. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. eapply AppAbs' with (a1 := subst_Tm (up_Tm_Tm ρ1) a1); eauto. by asimpl. hauto l:on use:renaming inv:option. - hauto lq:on rew:off ctrs:R. - hauto l:on inv:option use:renaming ctrs:R. - hauto lq:on use:ProjPair'. - move => n a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - sfirstorder. - hauto l:on inv:option ctrs:R use:renaming. - hauto q:on ctrs:R. - qauto l:on ctrs:R. - qauto l:on ctrs:R. - hauto l:on inv:option ctrs:R use:renaming. - sfirstorder. - sfirstorder. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b. Proof. move E : (ren_Tm ξ a) => u h. move : n ξ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=. move => c c0 [+ ?]. subst. case : c => //=. move => c [?]. subst. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=. move => []//= t t0 t1 [*]. subst. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [a0 [? ?]]. subst. eexists. split. apply AppEta; eauto. by asimpl. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply PairEta; eauto. by asimpl. - move => n i m ξ []//=. hauto l:on. - move => n a0 a1 ha iha m ξ []//= t [*]. subst. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. by apply ProjCong; eauto. by asimpl. - move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihB => [c0 [? ?]]. subst. eexists. split. by apply BindCong; eauto. by asimpl. - move => n n0 ξ []//=. hauto l:on. - move => n i n0 ξ []//=. hauto l:on. Qed. End Par. Module Pars. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : rtc Par.R a b -> rtc Par.R (ren_Tm ξ a) (ren_Tm ξ b). Proof. induction 1; hauto lq:on ctrs:rtc use:Par.renaming. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : rtc Par.R a b -> rtc Par.R (subst_Tm ρ a) (subst_Tm ρ b). induction 1; hauto l:on ctrs:rtc use:Par.substing. Qed. Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : rtc Par.R (ren_Tm ξ a) b -> exists b0, rtc Par.R a b0 /\ ren_Tm ξ b0 = b. Proof. move E :(ren_Tm ξ a) => u h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /Par.antirenaming : h0. move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End Pars. (***************** Beta rules only ***********************) Module RPar. Inductive R {n} : Tm n -> Tm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (Proj p (Abs a0)) (Abs (Proj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma refl n (a : Tm n) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : t = subst_Tm (scons b1 VarTm) a1 -> R a0 a1 -> R b0 b1 -> R (App (Abs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : R a b -> R (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a b : Tm (S n)) c d : R a b -> R c d -> R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b). Proof. move => h0 h1. apply morphing => //=. qauto l:on ctrs:R inv:option. Qed. End RPar. Module EPar. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (Pair (Proj PL a1) (Proj PR a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) | AbsCong a0 a1 : R a0 a1 -> R (Abs a0) (Abs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (App a0 b0) (App a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (Pair a0 b0) (Pair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (Proj p a0) (Proj p a1) | BindCong p A0 A1 B0 B1: R A0 A1 -> R B0 B1 -> R (TBind p A0 B0) (TBind p A1 B1) | BotCong : R Bot Bot | UnivCong i : R (Univ i) (Univ i). Lemma refl n (a : Tm n) : EPar.R a a. Proof. induction a; hauto lq:on ctrs:EPar.R. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a0 a1 ha iha m ξ /=. move /(_ _ ξ) /AppEta : iha. by asimpl. all : qauto ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Lemma AppEta' n (a0 a1 b : Tm n) : b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. move => h. move : m ρ0 ρ1. elim : n a b / h => n. - move => a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n a0 a1 (b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> R (subst_Tm (scons b0 VarTm) a0) (subst_Tm (scons b1 VarTm) a1). Proof. move => h0 h1. apply morphing => //. hauto lq:on ctrs:R inv:option. Qed. End EPar. Module OExp. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) | AppEta a : R a (Abs (App (ren_Tm shift a) (VarTm var_zero))) | PairEta a : R a (Pair (Proj PL a) (Proj PR a)). Lemma merge n (t a b : Tm n) : rtc R a b -> EPar.R t a -> EPar.R t b. Proof. move => h. move : t. elim : a b /h. - eauto using EPar.refl. - hauto q:on ctrs:EPar.R inv:R. Qed. Lemma commutativity n (a b c : Tm n) : EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d. Proof. move => h. inversion 1; subst. - hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl. - hauto lq:on ctrs:EPar.R, R. Qed. Lemma commutativity0 n (a b c : Tm n) : EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d. Proof. move => + h. move : b. elim : a c / h. - sfirstorder. - hauto lq:on rew:off ctrs:rtc use:commutativity. Qed. End OExp. Local Ltac com_helper := split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming]. Module RPars. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar.R use:RPar.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : Tm (S n)) : rtc RPar.R a b -> rtc RPar.R (Abs a) (Abs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1 : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar.renaming, rtc_l. Qed. Lemma weakening n (a0 a1 : Tm n) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_Tm shift a0) (ren_Tm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv n (a : Tm (S n)) b : rtc RPar.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar.R a a'. Proof. move E : (Abs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) : rtc RPar.R a b -> rtc RPar.R (subst_Tm ρ a) (subst_Tm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed. Lemma substing n (a b : Tm (S n)) c : rtc RPar.R a b -> rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. End RPars. Lemma Abs_EPar n a (b : Tm n) : EPar.R (Abs a) b -> (exists d, EPar.R a d /\ rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\ (exists d, EPar.R a d /\ forall p, rtc RPar.R (Proj p b) (Abs (Proj p d))). Proof. move E : (Abs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha b ?. subst. specialize iha with (1 := eq_refl). move : iha => [[d [ih0 ih1]] _]. split; exists d. + split => //. apply : rtc_l. apply RPar.AppAbs; eauto => //=. apply RPar.refl. by apply RPar.refl. move :ih1; substify; by asimpl. + split => // p. apply : rtc_l. apply : RPar.ProjAbs. by apply RPar.refl. eauto using RPars.ProjCong, RPars.AbsCong. - move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d [ih0 ih1]]]. split. + exists (Pair (Proj PL d) (Proj PR d)). split; first by apply EPar.PairEta. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. suff h : forall p, rtc RPar.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by sfirstorder use:RPars.PairCong. move => p. move /(_ p) /RPars.weakening in ih1. apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)). by eauto using RPars.AppCong, rtc_refl. apply relations.rtc_once => /=. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists d. repeat split => //. move => p. apply : rtc_l; eauto. hauto q:on use:RPar.ProjPair', RPar.refl. - move => n a0 a1 ha _ ? [*]. subst. split. + exists a1. split => //. apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists a1. split => // p. apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl. Qed. Lemma Pair_EPar n (a b c : Tm n) : EPar.R (Pair a b) c -> (forall p, exists d, rtc RPar.R (Proj p c) d /\ EPar.R (if p is PL then a else b) d) /\ (exists d0 d1, rtc RPar.R (App (ren_Tm shift c) (VarTm var_zero)) (Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\ EPar.R a d0 /\ EPar.R b d1). Proof. move E : (Pair a b) => u h. move : a b E. elim : n u c /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. split. + move => p. exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))). split. * apply : relations.rtc_transitive. ** apply RPars.ProjCong. apply RPars.AbsCong. eassumption. ** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. hauto l:on. * hauto lq:on use:EPar.AppEta'. + exists d0, d1. repeat split => //. apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=. by asimpl; renamify. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). split => [p|]. + move : iha => [/(_ p) [d [ih0 ih1]] _]. exists d. split=>//. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. set q := (X in rtc RPar.R X d). by have -> : q = Proj p a1 by hauto lq:on. + move :iha => [iha _]. move : (iha PL) => [d0 [ih0 ih0']]. move : (iha PR) => [d1 [ih1 ih1']] {iha}. exists d0, d1. apply RPars.weakening in ih0, ih1. repeat split => //=. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl. - move => n a0 a1 b0 b1 ha _ hb _ a b [*]. subst. split. + move => p. exists (if p is PL then a1 else b1). split. * apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl. * hauto lq:on rew:off. + exists a1, b1. split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl. split => //. Qed. Lemma commutativity0 n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => h. move : b1. elim : n a b0 / h. - move => n a b0 ha iha b1 hb. move : iha (hb) => /[apply]. move => [c [ih0 ih1]]. exists (Abs (App (ren_Tm shift c) (VarTm var_zero))). split. + hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0. move => [c [ih0 ih1]]. exists (Pair (Proj PL c) (Proj PR c)). split. + apply RPars.PairCong; by apply RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - hauto l:on ctrs:rtc inv:RPar.R. - move => n a0 a1 h ih b1. elim /RPar.inv => //= _. move => a2 a3 ? [*]. subst. hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong. - move => n a0 a1 b0 b1 ha iha hb ihb b2. elim /RPar.inv => //= _. + move => a2 a3 b3 b4 h0 h1 [*]. subst. move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]]. have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R. move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]]. exists (subst_Tm (scons b VarTm) d). split. (* By substitution *) * move /RPars.substing : ih2. move /(_ b). asimpl. eauto using relations.rtc_transitive, RPars.AppCong. (* By EPar morphing *) * by apply EPar.substing. + move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha => [c [ihc0 ihc1]]. move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]]. move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. move /RPars.substing : ih0. move /(_ d). asimpl => h. exists (Pair (App d0 d) (App d1 d)). split. hauto lq:on use:relations.rtc_transitive, RPars.AppCong. apply EPar.PairCong; by apply EPar.AppCong. + hauto lq:on ctrs:EPar.R use:RPars.AppCong. - hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong. - move => n p a b0 h0 ih0 b1. elim /RPar.inv => //= _. + move => ? a0 a1 h [*]. subst. move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]]. move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]]. exists (Abs (Proj p d)). qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive. + move => p0 a0 a1 b2 b3 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]]. move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _]. exists d. split => //. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong. - hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.BindCong. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. Qed. Lemma commutativity1 n (a b0 b1 : Tm n) : EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => + h. move : b0. elim : a b1 / h. - sfirstorder. - qauto l:on use:relations.rtc_transitive, commutativity0. Qed. Lemma commutativity n (a b0 b1 : Tm n) : rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. move => h. move : b1. elim : a b0 /h. - sfirstorder. - move => a0 a1 a2 + ha1 ih b1 +. move : commutativity1; repeat move/[apply]. hauto q:on ctrs:rtc. Qed. Lemma Abs_EPar' n a (b : Tm n) : EPar.R (Abs a) b -> (exists d, EPar.R a d /\ rtc OExp.R (Abs d) b). Proof. move E : (Abs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Proj_EPar' n p a (b : Tm n) : EPar.R (Proj p a) b -> (exists d, EPar.R a d /\ rtc OExp.R (Proj p d) b). Proof. move E : (Proj p a) => u h. move : p a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma App_EPar' n (a b u : Tm n) : EPar.R (App a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u). Proof. move E : (App a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bind_EPar' n p (a : Tm n) b u : EPar.R (TBind p a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (TBind p a0 b0) u). Proof. move E : (TBind p a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Pair_EPar' n (a b u : Tm n) : EPar.R (Pair a b) u -> exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u. Proof. move E : (Pair a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bot_EPar' n (u : Tm n) : EPar.R Bot u -> rtc OExp.R Bot u. move E : Bot => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Univ_EPar' n i (u : Tm n) : EPar.R (Univ i) u -> rtc OExp.R (Univ i) u. move E : (Univ i) => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma EPar_diamond n (c a1 b1 : Tm n) : EPar.R c a1 -> EPar.R c b1 -> exists d2, EPar.R a1 d2 /\ EPar.R b1 d2. Proof. move => h. move : b1. elim : n c a1 / h. - move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]]. exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))). hauto lq:on ctrs:EPar.R use:EPar.renaming. - hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on use:EPar.refl. - move => n a0 a1 ha iha a2. move /Abs_EPar' => [d [hd0 hd1]]. move : iha hd0; repeat move/[apply]. move => [d2 [h0 h1]]. have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong. move : OExp.commutativity0 hd1; repeat move/[apply]. move => [d1 [hd1 hd2]]. exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (App a2 b2)(App a3 b3) by hauto l:on use:EPar.AppCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (Pair a2 b2)(Pair a3 b3) by hauto l:on use:EPar.PairCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n p a0 a1 ha iha b. move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}. have : EPar.R (Proj p d) (Proj p d2) by hauto l:on use:EPar.ProjCong. move : OExp.commutativity0 h1; repeat move/[apply]. move => [d1 h1]. exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n p a0 a1 b0 b1 ha iha hb ihb c. move /Bind_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (TBind p a2 b2)(TBind p a3 b3) by hauto l:on use:EPar.BindCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - qauto use:Bot_EPar', EPar.refl. - qauto use:Univ_EPar', EPar.refl. Qed. Function tstar {n} (a : Tm n) := match a with | VarTm i => a | Abs a => Abs (tstar a) | App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a) | App (Pair a b) c => Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c)) | App a b => App (tstar a) (tstar b) | Pair a b => Pair (tstar a) (tstar b) | Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b) | Proj p (Abs a) => (Abs (Proj p (tstar a))) | Proj p a => Proj p (tstar a) | TBind p a b => TBind p (tstar a) (tstar b) | Bot => Bot | Univ i => Univ i end. Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a). Proof. apply tstar_ind => {n a}. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. Qed. Lemma RPar_diamond n (c a1 b1 : Tm n) : RPar.R c a1 -> RPar.R c b1 -> exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. Proof. hauto l:on use:RPar_triangle. Qed. Lemma RPar_confluent n (c a1 b1 : Tm n) : rtc RPar.R c a1 -> rtc RPar.R c b1 -> exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, RPar_diamond. Qed. Lemma EPar_confluent n (c a1 b1 : Tm n) : rtc EPar.R c a1 -> rtc EPar.R c b1 -> exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, EPar_diamond. Qed. Fixpoint depth_tm {n} (a : Tm n) := match a with | VarTm _ => 1 | TBind _ A B => 1 + max (depth_tm A) (depth_tm B) | Abs a => 1 + depth_tm a | App a b => 1 + max (depth_tm a) (depth_tm b) | Proj p a => 1 + depth_tm a | Pair a b => 1 + max (depth_tm a) (depth_tm b) | Bot => 1 | Univ i => 1 end. Lemma depth_ren n m (ξ: fin n -> fin m) a : depth_tm a = depth_tm (ren_Tm ξ a). Proof. move : m ξ. elim : n / a; scongruence. Qed. Lemma depth_subst n m (ρ : fin n -> Tm m) a : (forall i, depth_tm (ρ i) = 1) -> depth_tm a = depth_tm (subst_Tm ρ a). Proof. move : m ρ. elim : n / a. - sfirstorder. - move => n a iha m ρ hρ. simpl. f_equal. apply iha. destruct i as [i|]. + simpl. by rewrite -depth_ren. + by simpl. - hauto lq:on rew:off. - hauto lq:on rew:off. - hauto lq:on rew:off. - move => n p a iha b ihb m ρ hρ. simpl. f_equal. f_equal. by apply iha. apply ihb. destruct i as [i|]. + simpl. by rewrite -depth_ren. + by simpl. - sfirstorder. - sfirstorder. Qed. Lemma depth_subst_bool n (a : Tm (S n)) : depth_tm a = depth_tm (subst_Tm (scons Bot VarTm) a). Proof. apply depth_subst. destruct i as [i|] => //=. Qed. Local Ltac prov_tac := sfirstorder use:depth_ren. Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool. Definition prov_bind {n} p0 A0 B0 (a : Tm n) := match a with | TBind p A B => p = p0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | _ => False end. Definition prov_univ {n} i0 (a : Tm n) := match a with | Univ i => i = i0 | _ => False end. (* Can consider combine prov and provU *) Fixpoint prov {n} (h : Tm n) (a : Tm n) : Prop := match a with | (TBind p0 A0 B0) => prov_bind p0 A0 B0 h | (Abs a) => prov (ren_Tm shift h) a | (App a b) => prov h a | (Pair a b) => prov h a /\ prov h b | (Proj p a) => prov h a | Bot => False | VarTm _ => False | Univ i => prov_univ i h end. Fixpoint extract {n} (a : Tm n) : Tm n := match a with | TBind p A B => TBind p A B | Abs a => subst_Tm (scons Bot VarTm) (extract a) | App a b => extract a | Pair a b => extract a | Proj p a => extract a | Bot => Bot | VarTm i => VarTm i | Univ i => Univ i end. Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) : extract (ren_Tm ξ a) = ren_Tm ξ (extract a). Proof. move : m ξ. elim : n/a. - sfirstorder. - move => n a ih m ξ /=. rewrite ih. by asimpl. - hauto q:on. - hauto q:on. - hauto q:on. - hauto q:on. - sfirstorder. - sfirstorder. Qed. Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a : prov_bind p A B a -> prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). Proof. case : a => //=. hauto l:on use:Pars.renaming. Qed. Lemma prov_ren n m (ξ : fin n -> fin m) h a : prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a). Proof. move : m ξ h. elim : n / a => //=. - move => n a ih m ξ h. move /ih => {ih}. move /(_ _ (upRen_Tm_Tm ξ)) => /=. move => h0. suff : ren_Tm (upRen_Tm_Tm ξ) (ren_Tm shift h) = ren_Tm shift (ren_Tm ξ h) by move => <-. clear. case : h => * /=; by asimpl. - hauto l:on. - hauto l:on use:prov_bind_ren. - hauto lq:on inv:Tm. Qed. Definition hfb {n} (a : Tm n) := match a with | TBind _ _ _ => true | Univ _ => true | _ => false end. Lemma prov_morph n m (ρ : fin n -> Tm m) h a : prov h a -> hfb h -> prov (subst_Tm ρ h) (subst_Tm ρ a). Proof. move : m ρ h. elim : n / a => //=. - move => n a ih m ρ h + hb. move /ih => {ih}. move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)). by asimpl. - hauto q:on. - move => n p A ihA B ihB m ρ h /=. move => //= + h0. case : h h0 => //=. move => p0 A0 B0 _ [? [h1 h2]]. subst. hauto l:on use:Pars.substing. - hauto l:on inv:Tm. Qed. Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. Proof. move : m ξ. elim : n /u =>//=. Qed. Hint Rewrite @ren_hfb : prov. Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b. Proof. move => + + h. move : u. elim : n a b /h => //=. - move => n a0 a1 b0 b1 ha iha hb ihb u /= h h0. have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb. move /iha /(_ h1) : h. move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1). by asimpl. - hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov. - move => n a0 a1 ha iha A B. move /iha. hauto l:on use:prov_ren. - hauto l:on rew:db:prov. - hauto lq:on rew:db:prov. - hauto l:on rew:db:prov. - move => n p A0 A1 B0 B1 hA ihA hB ihB u. case : u => //=. move => p0 A B [? [h2 h3]]. subst. move => ?. repeat split => //=; hauto l:on use:rtc_r rew:db:prov. Qed. Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b. Proof. induction 3; hauto lq:on ctrs:rtc use:prov_par. Qed. Definition prov_extract_spec {n} u (a : Tm n) := match u with | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | Univ i => extract a = Univ i | _ => True end. Lemma prov_extract n u (a : Tm n) : prov u a -> prov_extract_spec u a. Proof. move : u. elim : n / a => //=. - move => n a ih [] //=. + move => p A B /=. move /ih {ih}. simpl. move => [A0[B0[h [h0 h1]]]]. have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by hauto l:on use:Pars.antirenaming. move => [A1 [h3 h4]]. have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 by hauto l:on use:Pars.antirenaming. move => [B1 [h5 h6]]. subst. have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on. move : h0. asimpl. hauto lq:on. + hauto q:on. - hauto lq:on rew:off inv:Tm rew:db:prov. - hauto inv:Tm l:on rew:db:prov. - hauto l:on inv:Tm rew:db:prov. Qed. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; qauto ctrs:Par.R. Qed. Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; hauto lq:on ctrs:Par.R. Qed. Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b := R0 a b \/ R1 a b. Module ERPar. Definition R {n} (a b : Tm n) := union RPar.R EPar.R a b. Lemma RPar {n} (a b : Tm n) : RPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma EPar {n} (a b : Tm n) : EPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma refl {n} ( a : Tm n) : ERPar.R a a. Proof. sfirstorder use:RPar.refl, EPar.refl. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : R a0 a1 -> rtc R (Proj p a0) (Proj p a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.ProjCong. - move => h. apply rtc_once. right. by apply EPar.ProjCong. Qed. Lemma AbsCong n (a0 a1 : Tm (S n)) : R a0 a1 -> rtc R (Abs a0) (Abs a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.AbsCong. - move => h. apply rtc_once. right. by apply EPar.AbsCong. Qed. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> rtc R (App a0 b0) (App a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.AppCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - sfirstorder use:EPar.AppCong, @rtc_once. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1: R a0 a1 -> R b0 b1 -> rtc R (TBind p a0 b0) (TBind p a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.BindCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.BindCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.BindCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.BindCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.BindCong, EPar.refl. - sfirstorder use:EPar.BindCong, @rtc_once. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : R a0 a1 -> R b0 b1 -> rtc R (Pair a0 b0) (Pair a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.PairCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - sfirstorder use:EPar.PairCong, @rtc_once. Qed. Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). Proof. sfirstorder use:EPar.renaming, RPar.renaming. Qed. End ERPar. Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong ERPar.BindCong : erpar. Module ERPars. #[local]Ltac solve_s_rec := move => *; eapply relations.rtc_transitive; eauto; hauto lq:on db:erpar. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AppCong n (a0 a1 b0 b1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (App a0 b0) (App a1 b1). Proof. solve_s. Qed. Lemma AbsCong n (a0 a1 : Tm (S n)) : rtc ERPar.R a0 a1 -> rtc ERPar.R (Abs a0) (Abs a1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (Pair a0 b0) (Pair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : Tm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. Lemma BindCong n p (a0 a1 : Tm n) b0 b1: rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : rtc ERPar.R a0 a1 -> rtc ERPar.R (ren_Tm ξ a0) (ren_Tm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using ERPar.renaming, rtc_l. Qed. End ERPars. Lemma ERPar_Par n (a b : Tm n) : ERPar.R a b -> Par.R a b. Proof. sfirstorder use:EPar_Par, RPar_Par. Qed. Lemma rtc_idem n (a b : Tm n) : rtc (rtc EPar.R) a b -> rtc EPar.R a b. Proof. induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r. Qed. Lemma Par_ERPar n (a b : Tm n) : Par.R a b -> rtc ERPar.R a b. Proof. move => h. elim : n a b /h. - move => n a0 a1 b0 b1 ha iha hb ihb. suff ? : rtc ERPar.R (App (Abs a0) b0) (App (Abs a1) b1). apply : relations.rtc_transitive; eauto. apply rtc_once. apply ERPar.RPar. by apply RPar.AppAbs; eauto using RPar.refl. eauto using ERPars.AppCong,ERPars.AbsCong. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc. apply : rtc_l. apply ERPar.RPar. apply RPar.AppPair; eauto using RPar.refl. sfirstorder use:ERPars.AppCong, ERPars.PairCong. - move => n p a0 a1 ha iha. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl. sfirstorder use:ERPars.AbsCong, ERPars.ProjCong. - move => n p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjPair; eauto using RPar.refl. hauto lq:on. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.AppEta; eauto using EPar.refl. hauto lq:on ctrs:rtc use:ERPars.AppCong, ERPars.AbsCong, ERPars.renaming. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl. sfirstorder use:ERPars.PairCong, ERPars.ProjCong. - sfirstorder. - sfirstorder use:ERPars.AbsCong. - sfirstorder use:ERPars.AppCong. - sfirstorder use:ERPars.PairCong. - sfirstorder use:ERPars.ProjCong. - sfirstorder use:ERPars.BindCong. - sfirstorder. - sfirstorder. Qed. Lemma Pars_ERPar n (a b : Tm n) : rtc Par.R a b -> rtc ERPar.R a b. Proof. induction 1; hauto l:on use:Par_ERPar, @relations.rtc_transitive. Qed. Lemma Par_ERPar_iff n (a b : Tm n) : rtc Par.R a b <-> rtc ERPar.R a b. Proof. split. sfirstorder use:Pars_ERPar, @relations.rtc_subrel. sfirstorder use:ERPar_Par, @relations.rtc_subrel. Qed. Lemma RPar_ERPar n (a b : Tm n) : rtc RPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Lemma EPar_ERPar n (a b : Tm n) : rtc EPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Module Type HindleyRosen. Parameter A : nat -> Type. Parameter R0 R1 : forall n, A n -> A n -> Prop. Axiom diamond_R0 : forall n, relations.diamond (R0 n). Axiom diamond_R1 : forall n, relations.diamond (R1 n). Axiom commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. End HindleyRosen. Module HindleyRosenFacts (M : HindleyRosen). Import M. Lemma R0_comm : forall n a b c, R0 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R0 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : diamond_R0 h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma R1_comm : forall n a b c, R1 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R1 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : diamond_R1 h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma U_comm : forall n a b c, (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ (union (R0 n) (R1 n)) c d. Proof. hauto lq:on use:R0_comm, R1_comm. Qed. Lemma U_comms : forall n a b c, rtc (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ rtc (union (R0 n) (R1 n)) c d. Proof. move => n a b + h. elim : a b /h. - sfirstorder. - hecrush ctrs:rtc use:U_comm. Qed. End HindleyRosenFacts. Module HindleyRosenER <: HindleyRosen. Definition A := Tm. Definition R0 n := rtc (@RPar.R n). Definition R1 n := rtc (@EPar.R n). Lemma diamond_R0 : forall n, relations.diamond (R0 n). sfirstorder use:RPar_confluent. Qed. Lemma diamond_R1 : forall n, relations.diamond (R1 n). sfirstorder use:EPar_confluent. Qed. Lemma commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. Proof. hauto l:on use:commutativity. Qed. End HindleyRosenER. Module ERFacts := HindleyRosenFacts HindleyRosenER. Lemma rtc_union n (a b : Tm n) : rtc (union RPar.R EPar.R) a b <-> rtc (union (rtc RPar.R) (rtc EPar.R)) a b. Proof. split; first by induction 1; hauto lq:on ctrs:rtc. move => h. elim :a b /h. - sfirstorder. - move => a0 a1 a2. case. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. Qed. Lemma Par_confluent n (a b c : Tm n) : rtc Par.R a b -> rtc Par.R a c -> exists d, rtc Par.R b d /\ rtc Par.R c d. Proof. move : n a b c. suff : forall (n : nat) (a b c : Tm n), rtc ERPar.R a b -> rtc ERPar.R a c -> exists d : Tm n, rtc ERPar.R b d /\ rtc ERPar.R c d. move => h n a b c h0 h1. apply Par_ERPar_iff in h0, h1. move : h h0 h1; repeat move/[apply]. hauto lq:on use:Par_ERPar_iff. have h := ERFacts.U_comms. move => n a b c. rewrite /HindleyRosenER.R0 /HindleyRosenER.R1 in h. specialize h with (n := n). rewrite /HindleyRosenER.A in h. rewrite /ERPar.R. have eq : (fun a0 b0 : Tm n => union RPar.R EPar.R a0 b0) = union RPar.R EPar.R by reflexivity. rewrite !{}eq. move /rtc_union => + /rtc_union. move : h; repeat move/[apply]. hauto lq:on use:rtc_union. Qed. Lemma pars_univ_inv n i (c : Tm n) : rtc Par.R (Univ i) c -> extract c = Univ i. Proof. have : prov (Univ i) (Univ i : Tm n) by sfirstorder. move : prov_pars. repeat move/[apply]. move /(_ ltac:(reflexivity)). by move/prov_extract. Qed. Lemma pars_pi_inv n p (A : Tm n) B C : rtc Par.R (TBind p A B) C -> exists A0 B0, extract C = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. Proof. have : prov (TBind p A B) (TBind p A B) by sfirstorder. move : prov_pars. repeat move/[apply]. move /(_ eq_refl). by move /prov_extract. Qed. Lemma pars_univ_inj n i j (C : Tm n) : rtc Par.R (Univ i) C -> rtc Par.R (Univ j) C -> i = j. Proof. sauto l:on use:pars_univ_inv. Qed. Lemma pars_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 C : rtc Par.R (TBind p0 A0 B0) C -> rtc Par.R (TBind p1 A1 B1) C -> exists A2 B2, p1 = p0 /\ rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ rtc Par.R B0 B2 /\ rtc Par.R B1 B2. Proof. move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]]. move /pars_pi_inv => [A3 [B3 [? [h2 h3]]]]. exists A2, B2. hauto l:on. Qed. Definition join {n} (a b : Tm n) := exists c, rtc Par.R a c /\ rtc Par.R b c. Lemma join_transitive n (a b c : Tm n) : join a b -> join b c -> join a c. Proof. rewrite /join. move => [ab [h0 h1]] [bc [h2 h3]]. move : Par_confluent h1 h2; repeat move/[apply]. move => [abc [h4 h5]]. eauto using relations.rtc_transitive. Qed. Lemma join_symmetric n (a b : Tm n) : join a b -> join b a. Proof. sfirstorder unfold:join. Qed. Lemma join_refl n (a : Tm n) : join a a. Proof. hauto lq:on ctrs:rtc unfold:join. Qed. Lemma join_univ_inj n i j : join (Univ i : Tm n) (Univ j) -> i = j. Proof. sfirstorder use:pars_univ_inj. Qed. Lemma join_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 : join (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ join A0 A1 /\ join B0 B1. Proof. move => [c []]. move : pars_pi_inj; repeat move/[apply]. sfirstorder unfold:join. Qed. Lemma join_univ_pi_contra n p (A : Tm n) B i : join (TBind p A B) (Univ i) -> False. Proof. rewrite /join. move => [c [h0 h1]]. move /pars_univ_inv : h1. move /pars_pi_inv : h0. hauto l:on. Qed. Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) : join a b -> join (subst_Tm ρ a) (subst_Tm ρ b). Proof. hauto lq:on unfold:join use:Pars.substing. Qed. Fixpoint erase {n} (a : Tm n) : Tm n := match a with | TBind p0 A0 B0 => TBind p0 (erase A0) (erase B0) | Abs a => Abs (erase a) | App a b => erase a | Pair a b => Pair (erase a) (erase b) | Proj p a => (erase a) | Bot => Bot | VarTm i => VarTm i | Univ i => Univ i end. Lemma erase_ren n m (u : Tm n) (ξ : fin n -> fin m) : erase (ren_Tm ξ u) = ren_Tm ξ (erase u). Proof. move : m ξ. elim : n /u => //=; scongruence. Qed. Lemma erase_subst n m (u : Tm n) (ρ : fin n -> Tm m) : erase (subst_Tm ρ u) = subst_Tm (funcomp erase ρ) (erase u). Proof. move : m ρ. elim : n /u => //= n. - move => a iha m ρ. f_equal. rewrite iha. asimpl => /=. apply ext_Tm. move => x. destruct x as [x|] => //=. rewrite /funcomp. by rewrite erase_ren. - scongruence. - move => p A ihA B ihB m ρ. f_equal. scongruence. rewrite ihB. apply ext_Tm => x. destruct x as [x|] => //=. rewrite /funcomp. simpl. by rewrite erase_ren. Qed. Lemma erase_subst' n m (u : Tm n) (ρ : fin n -> Tm m) : (forall i, ρ i = )