church #1
2 changed files with 172 additions and 13 deletions
136
theories/compile.v
Normal file
136
theories/compile.v
Normal file
|
@ -0,0 +1,136 @@
|
|||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax fp_red.
|
||||
Require Import ssreflect ssrbool.
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Module Compile.
|
||||
Fixpoint F {n} (a : Tm n) : Tm n :=
|
||||
match a with
|
||||
| TBind p A B => Pair (Pair (Const p) (F A)) (Abs (F B))
|
||||
| Const k => Const k
|
||||
| Univ i => Univ i
|
||||
| Abs a => Abs (F a)
|
||||
| App a b => App (F a) (F b)
|
||||
| VarTm i => VarTm i
|
||||
| Pair a b => Pair (F a) (F b)
|
||||
| Proj t a => Proj t (F a)
|
||||
end.
|
||||
|
||||
Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) :
|
||||
F (ren_Tm ξ a)= ren_Tm ξ (F a).
|
||||
Proof. move : m ξ. elim : n / a => //=; scongruence. Qed.
|
||||
|
||||
#[local]Hint Rewrite Compile.renaming : compile.
|
||||
|
||||
Lemma morphing n m (a : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
|
||||
(forall i, ρ0 i = F (ρ1 i)) ->
|
||||
subst_Tm ρ0 (F a) = F (subst_Tm ρ1 a).
|
||||
Proof.
|
||||
move : m ρ0 ρ1. elim : n / a => n//=.
|
||||
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
|
||||
- hauto lq:on rew:off.
|
||||
- hauto lq:on rew:off.
|
||||
- hauto lq:on.
|
||||
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
|
||||
Qed.
|
||||
|
||||
Lemma substing n b (a : Tm (S n)) :
|
||||
subst_Tm (scons (F b) VarTm) (F a) = F (subst_Tm (scons b VarTm) a).
|
||||
Proof.
|
||||
apply morphing.
|
||||
case => //=.
|
||||
Qed.
|
||||
|
||||
End Compile.
|
||||
|
||||
#[export] Hint Rewrite Compile.renaming Compile.morphing : compile.
|
||||
|
||||
|
||||
Module Join.
|
||||
Definition R {n} (a b : Tm n) := join (Compile.F a) (Compile.F b).
|
||||
|
||||
Lemma BindInj n p0 p1 (A0 A1 : Tm n) B0 B1 :
|
||||
R (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ R A0 A1 /\ R B0 B1.
|
||||
Proof.
|
||||
rewrite /R /= !join_pair_inj.
|
||||
move => [[/join_const_inj h0 h1] h2].
|
||||
apply abs_eq in h2.
|
||||
evar (t : Tm (S n)).
|
||||
have : join (App (ren_Tm shift (Abs (Compile.F B1))) (VarTm var_zero)) t by
|
||||
apply Join.FromPar; apply Par.AppAbs; auto using Par.refl.
|
||||
subst t. rewrite -/ren_Tm.
|
||||
move : h2. move /join_transitive => /[apply]. asimpl => h2.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma UnivInj n i j : R (Univ i : Tm n) (Univ j) -> i = j.
|
||||
Proof. hauto l:on use:join_univ_inj. Qed.
|
||||
|
||||
End Join.
|
||||
|
||||
Module Equiv.
|
||||
Inductive R {n} : Tm n -> Tm n -> Prop :=
|
||||
(***************** Beta ***********************)
|
||||
| AppAbs a b :
|
||||
R (App (Abs a) b) (subst_Tm (scons b VarTm) a)
|
||||
| ProjPair p a b :
|
||||
R (Proj p (Pair a b)) (if p is PL then a else b)
|
||||
|
||||
(****************** Eta ***********************)
|
||||
| AppEta a :
|
||||
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
|
||||
| PairEta a :
|
||||
R a (Pair (Proj PL a) (Proj PR a))
|
||||
|
||||
(*************** Congruence ********************)
|
||||
| Var i : R (VarTm i) (VarTm i)
|
||||
| AbsCong a b :
|
||||
R a b ->
|
||||
R (Abs a) (Abs b)
|
||||
| AppCong a0 a1 b0 b1 :
|
||||
R a0 a1 ->
|
||||
R b0 b1 ->
|
||||
R (App a0 b0) (App a1 b1)
|
||||
| PairCong a0 a1 b0 b1 :
|
||||
R a0 a1 ->
|
||||
R b0 b1 ->
|
||||
R (Pair a0 b0) (Pair a1 b1)
|
||||
| ProjCong p a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (Proj p a0) (Proj p a1)
|
||||
| BindCong p A0 A1 B0 B1:
|
||||
R A0 A1 ->
|
||||
R B0 B1 ->
|
||||
R (TBind p A0 B0) (TBind p A1 B1)
|
||||
| UnivCong i :
|
||||
R (Univ i) (Univ i).
|
||||
End Equiv.
|
||||
|
||||
Module EquivJoin.
|
||||
Lemma FromEquiv n (a b : Tm n) : Equiv.R a b -> Join.R a b.
|
||||
Proof.
|
||||
move => h. elim : n a b /h => n.
|
||||
- move => a b.
|
||||
rewrite /Join.R /join /=.
|
||||
eexists. split. apply relations.rtc_once.
|
||||
apply Par.AppAbs; auto using Par.refl.
|
||||
rewrite Compile.substing.
|
||||
apply relations.rtc_refl.
|
||||
- move => p a b.
|
||||
apply Join.FromPar.
|
||||
simpl. apply : Par.ProjPair'; auto using Par.refl.
|
||||
case : p => //=.
|
||||
- move => a. apply Join.FromPar => /=.
|
||||
apply : Par.AppEta'; auto using Par.refl.
|
||||
by autorewrite with compile.
|
||||
- move => a. apply Join.FromPar => /=.
|
||||
apply : Par.PairEta; auto using Par.refl.
|
||||
- hauto l:on use:Join.FromPar, Par.Var.
|
||||
- hauto lq:on use:Join.AbsCong.
|
||||
- qauto l:on use:Join.AppCong.
|
||||
- qauto l:on use:Join.PairCong.
|
||||
- qauto use:Join.ProjCong.
|
||||
- rewrite /Join.R => p A0 A1 B0 B1 _ hA _ hB /=.
|
||||
sfirstorder use:Join.PairCong,Join.AbsCong,Join.FromPar,Par.ConstCong.
|
||||
- hauto l:on.
|
||||
Qed.
|
||||
End EquivJoin.
|
|
@ -410,16 +410,16 @@ Module RPar.
|
|||
qauto l:on ctrs:R inv:option.
|
||||
Qed.
|
||||
|
||||
Lemma var_or_bot_imp {n} (a b : Tm n) :
|
||||
var_or_bot a ->
|
||||
a = b -> ~~ var_or_bot b -> False.
|
||||
Lemma var_or_const_imp {n} (a b : Tm n) :
|
||||
var_or_const a ->
|
||||
a = b -> ~~ var_or_const b -> False.
|
||||
Proof.
|
||||
hauto lq:on inv:Tm.
|
||||
Qed.
|
||||
|
||||
Lemma var_or_bot_up n m (ρ : fin n -> Tm m) :
|
||||
(forall i, var_or_bot (ρ i)) ->
|
||||
(forall i, var_or_bot (up_Tm_Tm ρ i)).
|
||||
Lemma var_or_const_up n m (ρ : fin n -> Tm m) :
|
||||
(forall i, var_or_const (ρ i)) ->
|
||||
(forall i, var_or_const (up_Tm_Tm ρ i)).
|
||||
Proof.
|
||||
move => h /= [i|].
|
||||
- asimpl.
|
||||
|
@ -430,10 +430,10 @@ Module RPar.
|
|||
- sfirstorder.
|
||||
Qed.
|
||||
|
||||
Local Ltac antiimp := qauto l:on use:var_or_bot_imp.
|
||||
Local Ltac antiimp := qauto l:on use:var_or_const_imp.
|
||||
|
||||
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) :
|
||||
(forall i, var_or_bot (ρ i)) ->
|
||||
(forall i, var_or_const (ρ i)) ->
|
||||
R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b.
|
||||
Proof.
|
||||
move E : (subst_Tm ρ a) => u hρ h.
|
||||
|
@ -444,7 +444,7 @@ Module RPar.
|
|||
case : c => //=; first by antiimp.
|
||||
move => c [?]. subst.
|
||||
spec_refl.
|
||||
have /var_or_bot_up hρ' := hρ.
|
||||
have /var_or_const_up hρ' := hρ.
|
||||
move : iha hρ' => /[apply] iha.
|
||||
move : ihb hρ => /[apply] ihb.
|
||||
spec_refl.
|
||||
|
@ -470,7 +470,7 @@ Module RPar.
|
|||
- move => n p a0 a1 ha iha m ρ hρ []//=;
|
||||
first by antiimp.
|
||||
move => p0 []//= t [*]; first by antiimp. subst.
|
||||
have /var_or_bot_up {}/iha := hρ => iha.
|
||||
have /var_or_const_up {}/iha := hρ => iha.
|
||||
spec_refl. move : iha => [b0 [? ?]]. subst.
|
||||
eexists. split. apply ProjAbs; eauto. by asimpl.
|
||||
- move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
|
||||
|
@ -488,7 +488,7 @@ Module RPar.
|
|||
hauto l:on.
|
||||
- move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp.
|
||||
move => t [*]. subst.
|
||||
have /var_or_bot_up {}/iha := hρ => iha.
|
||||
have /var_or_const_up {}/iha := hρ => iha.
|
||||
spec_refl.
|
||||
move :iha => [b0 [? ?]]. subst.
|
||||
eexists. split. by apply AbsCong; eauto.
|
||||
|
@ -524,7 +524,7 @@ Module RPar.
|
|||
first by antiimp.
|
||||
move => ? t t0 [*]. subst.
|
||||
have {}/iha := (hρ) => iha.
|
||||
have /var_or_bot_up {}/ihB := (hρ) => ihB.
|
||||
have /var_or_const_up {}/ihB := (hρ) => ihB.
|
||||
spec_refl.
|
||||
move : iha => [b0 [? ?]].
|
||||
move : ihB => [c0 [? ?]]. subst.
|
||||
|
@ -1838,7 +1838,7 @@ Definition prov_extract_spec {n} u (a : Tm n) :=
|
|||
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
|
||||
| Univ i => extract a = Univ i
|
||||
| VarTm i => extract a = VarTm i
|
||||
| (Const TPi) => extract a = (Const TPi)
|
||||
| (Const i) => extract a = (Const i)
|
||||
| _ => True
|
||||
end.
|
||||
|
||||
|
@ -2250,6 +2250,15 @@ Proof.
|
|||
apply prov_extract.
|
||||
Qed.
|
||||
|
||||
Lemma pars_const_inv n i (c : Tm n) :
|
||||
rtc Par.R (Const i) c ->
|
||||
extract c = Const i.
|
||||
Proof.
|
||||
have : prov (Const i) (Const i : Tm n) by sfirstorder.
|
||||
move : prov_pars. repeat move/[apply].
|
||||
apply prov_extract.
|
||||
Qed.
|
||||
|
||||
Lemma pars_pi_inv n p (A : Tm n) B C :
|
||||
rtc Par.R (TBind p A B) C ->
|
||||
exists A0 B0, extract C = TBind p A0 B0 /\
|
||||
|
@ -2277,6 +2286,14 @@ Proof.
|
|||
sauto l:on use:pars_univ_inv.
|
||||
Qed.
|
||||
|
||||
Lemma pars_const_inj n i j (C : Tm n) :
|
||||
rtc Par.R (Const i) C ->
|
||||
rtc Par.R (Const j) C ->
|
||||
i = j.
|
||||
Proof.
|
||||
sauto l:on use:pars_const_inv.
|
||||
Qed.
|
||||
|
||||
Lemma pars_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 C :
|
||||
rtc Par.R (TBind p0 A0 B0) C ->
|
||||
rtc Par.R (TBind p1 A1 B1) C ->
|
||||
|
@ -2314,6 +2331,12 @@ Proof.
|
|||
sfirstorder use:pars_univ_inj.
|
||||
Qed.
|
||||
|
||||
Lemma join_const_inj n i j :
|
||||
join (Const i : Tm n) (Const j) -> i = j.
|
||||
Proof.
|
||||
sfirstorder use:pars_const_inj.
|
||||
Qed.
|
||||
|
||||
Lemma join_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 :
|
||||
join (TBind p0 A0 B0) (TBind p1 A1 B1) ->
|
||||
p0 = p1 /\ join A0 A1 /\ join B0 B1.
|
||||
|
|
Loading…
Add table
Reference in a new issue