Compare commits

..

No commits in common. "main" and "sigma-type" have entirely different histories.

10 changed files with 1640 additions and 3445 deletions

View file

@ -6,7 +6,7 @@ theories: $(COQMAKEFILE) FORCE
validate: $(COQMAKEFILE) FORCE
$(MAKE) -f $(COQMAKEFILE) validate
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
$(COQBIN)coq_makefile -f _CoqProject -o $(COQMAKEFILE)
install: $(COQMAKEFILE)
@ -15,13 +15,13 @@ install: $(COQMAKEFILE)
uninstall: $(COQMAKEFILE)
$(MAKE) -f $(COQMAKEFILE) uninstall
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v : syntax.sig
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
.PHONY: clean FORCE
clean:
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v theories/Autosubst2/unscoped.v
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
FORCE:

View file

@ -1,29 +1,16 @@
nat : Type
PTm(VarPTm) : Type
Tm(VarTm) : Type
PTag : Type
TTag : Type
bool : Type
PL : PTag
PR : PTag
TPi : TTag
TSig : TTag
PAbs : (bind PTm in PTm) -> PTm
PApp : PTm -> PTm -> PTm
PPair : PTm -> PTm -> PTm
PProj : PTag -> PTm -> PTm
PConst : TTag -> PTm
PUniv : nat -> PTm
PBot : PTm
PL : PTag
PR : PTag
Abs : (bind Tm in Tm) -> Tm
App : Tm -> Tm -> Tm
Pair : Tm -> Tm -> Tm
Proj : PTag -> Tm -> Tm
TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm
Bot : Tm
Univ : nat -> Tm
BVal : bool -> Tm
Bool : Tm
If : Tm -> Tm -> Tm -> Tm

View file

@ -0,0 +1,419 @@
(** * Autosubst Header for Scoped Syntax
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
Version: December 11, 2019.
*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Set Implicit Arguments.
Unset Strict Implicit.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
*)
Fixpoint fin (n : nat) : Type :=
match n with
| 0 => False
| S m => option (fin m)
end.
(** Renamings and Injective Renamings
_Renamings_ are mappings between finite types.
*)
Definition ren (m n : nat) : Type := fin m -> fin n.
Definition id {X} := @Datatypes.id X.
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
Definition var_zero {n : nat} : fin (S n) := None.
Definition null {T} (i : fin 0) : T := match i with end.
Definition shift {n : nat} : ren n (S n) :=
Some.
(** Extension of Finite Mappings
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
*)
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
match m with
| None => x
| Some i => f i
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** ** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
(** ** Proofs for substitution primitives *)
(** Forward Function Composition
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** Generic lifting operation for renamings *)
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
var_zero .: xi >> shift.
(** Generic proof that lifting of renamings composes. *)
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [x|].
- cbn. unfold funcomp. now rewrite <- E.
- reflexivity.
Qed.
Arguments up_ren_ren {k l m} xi zeta rho E.
Lemma fin_eta {X} (f g : fin 0 -> X) :
pointwise_relation _ eq f g.
Proof. intros []. Qed.
(** Eta laws *)
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' {n : nat} :
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
(* (scons s f (shift x)) = f x. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} {n:nat} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
Proof.
intros t t' -> sigma tau H.
intros [x|].
cbn. apply H.
reflexivity.
Qed.
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [x|].
cbn. apply H.
reflexivity.
Qed.
(** ** Variadic Substitution Primitives *)
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
fun n => match p with
| 0 => n
| S p => Some (shift_p p n)
end.
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
Proof.
destruct m.
- intros n f g. exact g.
- intros n f g. cbn. apply scons.
+ exact (f var_zero).
+ apply scons_p.
* intros z. exact (f (Some z)).
* exact g.
Defined.
#[export] Hint Opaque scons_p : rewrite.
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau.
intros x.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
Proof.
induction m.
- intros [].
- intros [x|].
+ exact (shift_p 1 (IHm x)).
+ exact var_zero.
Defined.
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
(scons_p f g) (zero_p z) = f z.
Proof.
induction m.
- inversion z.
- destruct z.
+ simpl. simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
Proof.
intros z.
unfold funcomp.
induction m.
- inversion z.
- destruct z.
+ simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
scons_p f g (shift_p m z) = g z.
Proof. induction m; cbn; eauto. Qed.
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
Proof. intros z. induction m; cbn; eauto. Qed.
Lemma destruct_fin {m n} (x : fin (m + n)):
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
Proof.
induction m; simpl in *.
- right. eauto.
- destruct x as [x|].
+ destruct (IHm x) as [[x' ->] |[x' ->]].
* left. now exists (Some x').
* right. eauto.
+ left. exists None. eauto.
Qed.
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
Proof.
intros x.
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
(* TODO better way to solve this? *)
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
now setoid_rewrite scons_p_head_pointwise.
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
now rewrite !scons_p_tail_pointwise.
Qed.
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
(** Generic n-ary lifting operation. *)
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
scons_p (zero_p ) (xi >> shift_p _).
Arguments upRen_p p {m n} xi.
(** Generic proof for composition of n-ary lifting. *)
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
Proof.
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
now rewrite <- E.
Qed.
Arguments zero_p m {n}.
Arguments scons_p {X} m {n} f g.
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
Proof.
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
- rewrite scons_p_head'. eauto.
- rewrite scons_p_tail'. eauto.
Qed.
Arguments scons_p_eta {X} {m n} {f g} h {z}.
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
(** ** Notations for Scoped Syntax *)
Module ScopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End ScopedNotations.
(** ** Tactics for Scoped Syntax *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : fin 0), _] => intros []; t
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
| [|- forall (i : fin (S _)), _] => intros [?|]; t
end).
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
| [|- context[idren >> ?f]] => change (idren >> f) with f
| [|- context[?f >> idren]] => change (f >> idren) with f
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
(* | _ => progress autorewrite with FunctorInstances *)
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
end.

File diff suppressed because it is too large Load diff

View file

@ -1,213 +0,0 @@
(** * Autosubst Header for Unnamed Syntax
Version: December 11, 2019.
*)
(* Adrian:
I changed this library a bit to work better with my generated code.
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus. *)
Definition shift := S.
Definition var_zero := 0.
Definition id {X} := @Datatypes.id X.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation
Required to make notation work. *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** *** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
#[export] Instance idsRen : Var nat nat := id.
(** ** Proofs for the substitution primitives. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** A generic lifting of a renaming. *)
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
(** A generic proof that lifting of renamings composes. *)
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
(** Eta laws. *)
Lemma scons_eta' {T} (f : nat -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t -> sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
(** ** Generic lifting of an allfv predicate *)
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
(** ** Notations for unscoped syntax *)
Module UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
(** ** Tactics for unscoped syntax *)
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : nat), _] => intros []; t
end).
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
end.

View file

@ -1,186 +0,0 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax fp_red.
Require Import ssreflect ssrbool.
From Hammer Require Import Tactics.
From stdpp Require Import relations (rtc(..)).
Module Compile.
Fixpoint F {n} (a : Tm n) : Tm n :=
match a with
| TBind p A B => Pair (Pair (Const p) (F A)) (Abs (F B))
| Const k => Const k
| Univ i => Univ i
| Abs a => Abs (F a)
| App a b => App (F a) (F b)
| VarTm i => VarTm i
| Pair a b => Pair (F a) (F b)
| Proj t a => Proj t (F a)
| Bot => Bot
| If a b c => App (App (F a) (F b)) (F c)
| BVal b => if b then (Abs (Abs (VarTm (shift var_zero)))) else (Abs (Abs (VarTm var_zero)))
| Bool => Bool
end.
Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) :
F (ren_Tm ξ a)= ren_Tm ξ (F a).
Proof. move : m ξ. elim : n / a => //=; hauto lq:on. Qed.
#[local]Hint Rewrite Compile.renaming : compile.
Lemma morphing n m (a : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, ρ0 i = F (ρ1 i)) ->
subst_Tm ρ0 (F a) = F (subst_Tm ρ1 a).
Proof.
move : m ρ0 ρ1. elim : n / a => n//=.
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- hauto lq:on.
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
Qed.
Lemma substing n b (a : Tm (S n)) :
subst_Tm (scons (F b) VarTm) (F a) = F (subst_Tm (scons b VarTm) a).
Proof.
apply morphing.
case => //=.
Qed.
End Compile.
#[export] Hint Rewrite Compile.renaming Compile.morphing : compile.
Module Join.
Definition R {n} (a b : Tm n) := join (Compile.F a) (Compile.F b).
Lemma BindInj n p0 p1 (A0 A1 : Tm n) B0 B1 :
R (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ R A0 A1 /\ R B0 B1.
Proof.
rewrite /R /= !join_pair_inj.
move => [[/join_const_inj h0 h1] h2].
apply abs_eq in h2.
evar (t : Tm (S n)).
have : join (App (ren_Tm shift (Abs (Compile.F B1))) (VarTm var_zero)) t by
apply Join.FromPar; apply Par.AppAbs; auto using Par.refl.
subst t. rewrite -/ren_Tm.
move : h2. move /join_transitive => /[apply]. asimpl => h2.
tauto.
Qed.
Lemma UnivInj n i j : R (Univ i : Tm n) (Univ j) -> i = j.
Proof. hauto l:on use:join_univ_inj. Qed.
Lemma transitive n (a b c : Tm n) :
R a b -> R b c -> R a c.
Proof. hauto l:on use:join_transitive unfold:R. Qed.
Lemma symmetric n (a b : Tm n) :
R a b -> R b a.
Proof. hauto l:on use:join_symmetric. Qed.
Lemma reflexive n (a : Tm n) :
R a a.
Proof. hauto l:on use:join_refl. Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b -> R (subst_Tm ρ a) (subst_Tm ρ b).
Proof.
rewrite /R.
rewrite /join.
move => [C [h0 h1]].
repeat (rewrite <- Compile.morphing with (ρ0 := funcomp Compile.F ρ); last by reflexivity).
hauto lq:on use:join_substing.
Qed.
End Join.
Module Equiv.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a b :
R (App (Abs a) b) (subst_Tm (scons b VarTm) a)
| ProjPair p a b :
R (Proj p (Pair a b)) (if p is PL then a else b)
(****************** Eta ***********************)
| AppEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
| PairEta a :
R a (Pair (Proj PL a) (Proj PR a))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a b :
R a b ->
R (Abs a) (Abs b)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| BindCong p A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (TBind p A0 B0) (TBind p A1 B1)
| UnivCong i :
R (Univ i) (Univ i).
End Equiv.
Module EquivJoin.
Lemma FromEquiv n (a b : Tm n) : Equiv.R a b -> Join.R a b.
Proof.
move => h. elim : n a b /h => n.
- move => a b.
rewrite /Join.R /join /=.
eexists. split. apply relations.rtc_once.
apply Par.AppAbs; auto using Par.refl.
rewrite Compile.substing.
apply relations.rtc_refl.
- move => p a b.
apply Join.FromPar.
simpl. apply : Par.ProjPair'; auto using Par.refl.
case : p => //=.
- move => a. apply Join.FromPar => /=.
apply : Par.AppEta'; auto using Par.refl.
by autorewrite with compile.
- move => a. apply Join.FromPar => /=.
apply : Par.PairEta; auto using Par.refl.
- hauto l:on use:Join.FromPar, Par.Var.
- hauto lq:on use:Join.AbsCong.
- qauto l:on use:Join.AppCong.
- qauto l:on use:Join.PairCong.
- qauto use:Join.ProjCong.
- rewrite /Join.R => p A0 A1 B0 B1 _ hA _ hB /=.
sfirstorder use:Join.PairCong,Join.AbsCong,Join.FromPar,Par.ConstCong.
- hauto l:on.
Qed.
End EquivJoin.
Lemma compile_rpar n (a b : Tm n) : RPar'.R a b -> RPar'.R (Compile.F a) (Compile.F b).
Proof.
move => h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb /=.
rewrite -Compile.substing.
apply RPar'.AppAbs => //.
- hauto q:on use:RPar'.ProjPair'.
- qauto ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
Qed.
Lemma compile_rpars n (a b : Tm n) : rtc RPar'.R a b -> rtc RPar'.R (Compile.F a) (Compile.F b).
Proof. induction 1; hauto lq:on ctrs:rtc use:compile_rpar. Qed.

View file

@ -18,25 +18,3 @@ a0 >> a1
| |
v v
b0 >> b1
prov x (x, x)
prov x b
a => b
prov x a
prov y b
prov x c
prov y c
extract c = x
extract c = y
prov x b
pr

File diff suppressed because it is too large Load diff

View file

@ -1,26 +1,23 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax fp_red compile.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Require Import fp_red.
From Hammer Require Import Tactics.
From Equations Require Import Equations.
Require Import ssreflect ssrbool.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..), rtc_subrel).
Import Psatz.
Definition ProdSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
Definition ProdSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop :=
forall a PB, PA a -> PF a PB -> PB (App b a).
Definition SumSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition SumSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop :=
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
Definition BindSpace p := if p is TPi then ProdSpace else SumSpace.
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
| InterpExt_Ne A :
ne A ->
A i ;; I wne
Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop :=
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
@ -32,12 +29,12 @@ Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) ->
Univ j i ;; I (I j)
| InterpExt_Step A A0 PA :
RPar'.R A A0 ->
RPar.R A A0 ->
A0 i ;; I PA ->
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) :
PF = I j ->
j < i ->
Univ j i ;; I PF.
@ -45,29 +42,28 @@ Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
Equations InterpUnivN (i : nat) : Tm 0 -> (Tm 0 -> Prop) -> Prop by wf i lt :=
InterpUnivN i := @InterpExt i
(fun j A =>
match j <? i with
| left _ => exists PA, InterpUnivN n j A PA
| left _ => exists PA, InterpUnivN j A PA
| right _ => False
end).
Arguments InterpUnivN {n}.
Arguments InterpUnivN .
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA ->
A i ;; I' PA.
Proof.
move => hI h.
elim : A PA /h.
- hauto q:on ctrs:InterpExt.
- hauto lq:on rew:off ctrs:InterpExt.
- hauto q:on ctrs:InterpExt.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA =
A i ;; I' PA.
@ -79,8 +75,8 @@ Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, A j PA).
Lemma InterpUnivN_nolt i :
InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
@ -93,12 +89,12 @@ Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed.
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P
(h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) /\
@ -107,35 +103,24 @@ Proof.
move E : (TBind p A B) h => T h.
move : A B E.
elim : T P / h => //.
- move => //= *. scongruence.
- hauto l:on.
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
hauto lq:on ctrs:InterpExt use:RPar_substone.
Qed.
Lemma InterpExt_Ne_inv n i A I P
(h : A : Tm n i ;; I P) :
ne A ->
P = wne.
Proof.
elim : A P / h => //=.
qauto l:on ctrs:prov inv:prov use:nf_refl.
Qed.
Lemma InterpExt_Univ_inv n i I j P
(h : Univ j : Tm n i ;; I P) :
Lemma InterpExt_Univ_inv i I j P
(h : Univ j i ;; I P) :
P = I j /\ j < i.
Proof.
move : h.
move E : (Univ j) => T h. move : j E.
elim : T P /h => //.
- move => //= *. scongruence.
- hauto l:on.
- hauto lq:on rew:off inv:RPar'.R.
- hauto lq:on rew:off inv:RPar.R.
Qed.
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA :
A i ;; I PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) ->
TBind p A B i ;; I (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB)).
@ -143,7 +128,7 @@ Proof.
move => h0 h1. apply InterpExt_Bind =>//.
Qed.
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA :
A i PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) ->
TBind p A B i (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB)).
@ -151,7 +136,7 @@ Proof.
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
Qed.
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
i <= j ->
A i ;; I PA ->
A j ;; I PA.
@ -161,87 +146,61 @@ Proof.
hauto l:on ctrs:InterpExt solve+:(by lia).
Qed.
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
A i PA -> forall j, i <= j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
RPar'.R A B ->
Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) :
RPar.R A B ->
B i ;; I P.
Proof.
move : B.
elim : A P / h; auto.
- hauto lq:on use:nf_refl ctrs:InterpExt.
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
elim /RPar'.inv : hT => //.
elim /RPar.inv : hT => //.
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
apply InterpExt_Bind; auto => a PB hPB0.
apply : ihPB; eauto.
sfirstorder use:RPar'.cong, RPar'.refl.
- hauto lq:on inv:RPar'.R ctrs:InterpExt.
sfirstorder use:RPar.cong, RPar.refl.
- hauto lq:on inv:RPar.R ctrs:InterpExt.
- move => A B P h0 h1 ih1 C hC.
have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC.
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : A i P) :
RPar'.R A B ->
Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : A i P) :
RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : B i ;; I P) :
rtc RPar'.R A B ->
Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : B i ;; I P) :
rtc RPar.R A B ->
A i ;; I P.
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : A i ;; I P) :
rtc RPar'.R A B ->
Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : A i ;; I P) :
rtc RPar.R A B ->
B i ;; I P.
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : A i P) :
rtc RPar'.R A B ->
Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : A i P) :
rtc RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : B i P) :
rtc RPar'.R A B ->
Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : B i P) :
rtc RPar.R A B ->
A i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
Function hfb {n} (A : Tm n) :=
match A with
| TBind _ _ _ => true
| Univ _ => true
| _ => ne A
end.
Inductive hfb_case {n} : Tm n -> Prop :=
| hfb_bind p A B :
hfb_case (TBind p A B)
| hfb_univ i :
hfb_case (Univ i)
| hfb_ne A :
ne A ->
hfb_case A.
Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop.
Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A.
Proof. case : A => //=. Qed.
Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A.
Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed.
Lemma InterpExtInv n i I (A : Tm n) PA :
Lemma InterpExtInv i I (A : Tm 0) PA :
A i ;; I PA ->
exists B, hfb B /\ rtc RPar'.R A B /\ B i ;; I PA.
exists B, hfb B /\ rtc RPar.R A B /\ B i ;; I PA.
Proof.
move => h. elim : A PA /h.
- hauto q:on ctrs:InterpExt, rtc use:ne_hfb.
- move => p A B PA PF hPA _ hPF hPF0 _.
exists (TBind p A B). repeat split => //=.
apply rtc_refl.
@ -251,26 +210,17 @@ Proof.
- hauto lq:on ctrs:rtc.
Qed.
Lemma RPar'_Par n (A B : Tm n) :
RPar'.R A B ->
Par.R A B.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
Lemma RPar's_Pars n (A B : Tm n) :
rtc RPar'.R A B ->
Lemma RPars_Pars (A B : Tm 0) :
rtc RPar.R A B ->
rtc Par.R A B.
Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed.
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
Lemma RPar's_join n (A B : Tm n) :
rtc RPar'.R A B -> Join.R A B.
Proof.
rewrite /Join.R => h.
have {}h : rtc RPar'.R (Compile.F A) (Compile.F B) by eauto using compile_rpars.
rewrite /join. eauto using RPar's_Pars, rtc_refl.
Qed.
Lemma RPars_join (A B : Tm 0) :
rtc RPar.R A B -> join A B.
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b :
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b :
(forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a, PA a -> exists PB0, PF0 a PB0) ->
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
@ -291,105 +241,23 @@ Proof.
hauto lq:on rew:off.
Qed.
Lemma ne_prov_inv n (a : Tm n) :
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
Proof.
elim : n /a => //=.
- hauto lq:on ctrs:prov.
- hauto lq:on rew:off ctrs:prov b:on.
- hauto lq:on ctrs:prov.
- move => n k.
have : @prov n Bot Bot by auto using P_Bot.
eauto.
Qed.
Lemma ne_pars_inv n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
Proof.
move /ne_prov_inv.
sfirstorder use:prov_pars.
Qed.
Lemma ne_pars_extract n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
Lemma const_pars_extract n k b :
rtc Par.R (Const k : Tm n) b -> extract b = Const k.
Proof. hauto l:on use:pars_const_inv, prov_extract. Qed.
Lemma compile_ne n (a : Tm n) :
ne a = ne (Compile.F a) /\ nf a = nf (Compile.F a).
Proof.
elim : n / a => //=; sfirstorder b:on.
Qed.
Lemma join_univ_pi_contra n p (A : Tm n) B i :
Join.R (TBind p A B) (Univ i) -> False.
Proof.
rewrite /Join.R /=.
rewrite !pair_eq.
move => [[h _ ]_ ].
move : h => [C [h0 h1]].
have ? : extract C = Const p by hauto l:on use:pars_const_inv.
have h : prov (Univ i : Tm n) (Proj PL (Proj PL (Univ i))) by hauto lq:on ctrs:prov.
have {h} : prov (Univ i) C by eauto using prov_pars.
move /prov_extract=>/=. congruence.
Qed.
Lemma join_bind_ne_contra n p (A : Tm n) B C :
ne C ->
Join.R (TBind p A B) C -> False.
Proof.
rewrite /Join.R. move => hC /=.
rewrite !pair_eq.
move => [[[D [h0 h1]] _] _].
have {}hC : ne (Compile.F C) by hauto lq:on use:compile_ne.
have {}hC : ne (Proj PL (Proj PL (Compile.F C))) by scongruence.
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
have : extract D = Const p by eauto using const_pars_extract.
sfirstorder.
Qed.
Lemma join_univ_ne_contra n i C :
ne C ->
Join.R (Univ i : Tm n) C -> False.
Proof.
move => hC [D [h0 h1]].
move /pars_univ_inv : h0 => ?.
have : (exists i, extract D = (VarTm i)) \/ exists k, extract D =(Const k) by hauto q:on use:ne_pars_extract, compile_ne.
sfirstorder.
Qed.
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra Join.symmetric Join.transitive : join.
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
Lemma InterpExt_Join i I (A B : Tm 0) PA PB :
A i ;; I PA ->
B i ;; I PB ->
Join.R A B ->
join A B ->
PA = PB.
Proof.
move => h. move : B PB. elim : A PA /h.
- move => A hA B PB /InterpExtInv.
move => [B0 []].
move /hfb_caseP. elim/hfb_inv => _.
+ move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso.
eauto with join.
+ move => ? ? [/RPar's_join *]. subst. exfalso.
eauto with join.
+ hauto lq:on use:InterpExt_Ne_inv.
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
move => [B0 []].
move /hfb_caseP.
elim /hfb_inv => _.
rename B0 into B00.
+ move => p0 A0 B0 ? [hr hPi]. subst.
case : B0 => //=.
+ move => p0 A0 B0 _ [hr hPi].
move /InterpExt_Bind_inv : hPi.
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
move => hjoin.
have{}hr : Join.R U (TBind p0 A0 B0) by auto using RPar's_join.
have hj : Join.R (TBind p A B) (TBind p0 A0 B0) by eauto using Join.transitive.
have {hj} : p0 = p /\ Join.R A A0 /\ Join.R B B0 by hauto l:on use:Join.BindInj.
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
move => [? [h0 h1]]. subst.
have ? : PA0 = PA by hauto l:on. subst.
rewrite /ProdSpace.
@ -398,70 +266,66 @@ Proof.
apply bindspace_iff; eauto.
move => a PB PB0 hPB hPB0.
apply : ihPF; eauto.
rewrite /Join.R.
rewrite -!Compile.substing.
hauto l:on use:join_substing.
+ move => j ?. subst.
by apply join_substing.
+ move => j _.
move => [h0 h1] h.
have ? : Join.R U (Univ j) by eauto using RPar's_join.
have : Join.R (TBind p A B) (Univ j) by eauto using Join.transitive.
have ? : join U (Univ j) by eauto using RPars_join.
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
move => ?. exfalso.
hauto l: on use: join_univ_pi_contra.
+ move => A0 ? ? [/RPar's_join ?]. subst.
move => _ ?. exfalso. eauto with join.
eauto using join_univ_pi_contra.
- move => j ? B PB /InterpExtInv.
move => [? []]. move/hfb_caseP.
elim /hfb_inv => //= _.
move => [+ []]. case => //=.
+ move => p A0 B0 _ [].
move /RPar's_join => *.
exfalso. eauto with join.
+ move => m _ [/RPar's_join h0 + h1].
have /join_univ_inj {h0 h1} ? : Join.R (Univ j : Tm n) (Univ m) by eauto using Join.transitive.
move /RPars_join => *.
have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive.
exfalso.
eauto using join_univ_pi_contra.
+ move => m _ [/RPars_join h0 + h1].
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive.
subst.
move /InterpExt_Univ_inv. firstorder.
+ move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join.
- move => A A0 PA h.
have /Join.symmetric {}h : Join.R A A0 by hauto lq:on ctrs:rtc use:RPar's_join, relations.rtc_once.
eauto with join.
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
eauto using join_transitive.
Qed.
Lemma InterpUniv_Join n i (A B : Tm n) PA PB :
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
A i PA ->
B i PB ->
Join.R A B ->
join A B ->
PA = PB.
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
(h : TBind p A B i P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
A i PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA PF.
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
Lemma InterpUniv_Univ_inv n i j P
Lemma InterpUniv_Univ_inv i j P
(h : Univ j i P) :
P = (fun (A : Tm n) => exists PA, A j PA) /\ j < i.
P = (fun (A : Tm 0) => exists PA, A j PA) /\ j < i.
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
Lemma InterpExt_Functional i I (A B : Tm 0) PA PB :
A i ;; I PA ->
A i ;; I PB ->
PA = PB.
Proof. hauto use:InterpExt_Join, join_refl. Qed.
Lemma InterpUniv_Functional n i (A : Tm n) PA PB :
Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
A i PA ->
A i PB ->
PA = PB.
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB :
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
A i PA ->
B j PB ->
Join.R A B ->
join A B ->
PA = PB.
Proof.
have [? ?] : i <= max i j /\ j <= max i j by lia.
@ -471,16 +335,16 @@ Proof.
eauto using InterpUniv_Join.
Qed.
Lemma InterpUniv_Functional' n i j A PA PB :
A : Tm n i PA ->
Lemma InterpUniv_Functional' i j A PA PB :
A i PA ->
A j PB ->
PA = PB.
Proof.
hauto l:on use:InterpUniv_Join', join_refl.
Qed.
Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop),
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm 0 -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB).
@ -501,42 +365,34 @@ Proof.
split; hauto q:on use:InterpExt_Functional.
Qed.
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : TBind p A B i P) :
exists (PA : Tm n -> Prop),
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : TBind p A B i P) :
exists (PA : Tm 0 -> Prop),
A i PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB).
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
Lemma InterpExt_back_clos i I (A : Tm 0) PA :
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (RPar'.R a b) ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
move => hI h.
elim : A PA /h.
- hauto q:on ctrs:rtc unfold:wne.
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
case : p => //=.
+ have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a)
by hauto lq:on ctrs:RPar'.R use:RPar'.refl.
+ have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a)
by hauto lq:on ctrs:RPar.R use:RPar.refl.
hauto lq:on rew:off unfold:ProdSpace.
+ hauto lq:on ctrs:rtc unfold:SumSpace.
- eauto.
- eauto.
Qed.
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (rtc RPar'.R a b) ->
PA b -> PA a.
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
Lemma InterpUniv_back_clos i (A : Tm 0) PA :
A i PA ->
forall a b, (RPar'.R a b) ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
simp InterpUniv.
@ -544,9 +400,9 @@ Proof.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
Qed.
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
Lemma InterpUniv_back_clos_star i (A : Tm 0) PA :
A i PA ->
forall a b, rtc RPar'.R a b ->
forall a b, rtc RPar.R a b ->
PA b -> PA a.
Proof.
move => h a b.
@ -554,101 +410,30 @@ Proof.
hauto lq:on use:InterpUniv_back_clos.
Qed.
Lemma pars'_wn {n} a b :
rtc RPar'.R a b ->
@wn n b ->
wn a.
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA,
subst_Tm ρ (Γ i) m PA -> PA (ρ i).
(* P identifies a set of "reducibility candidates" *)
Definition CR {n} (P : Tm n -> Prop) :=
(forall a, P a -> wn a) /\
(forall a, ne a -> P a).
Lemma adequacy_ext i n I A PA
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
(hI : forall j, j < i -> CR (I j))
(h : A : Tm n i ;; I PA) :
CR PA /\ wn A.
Proof.
elim : A PA / h.
- hauto unfold:wne use:wne_wn.
- move => p A B PA PF hA hPA hTot hRes ihPF.
rewrite /CR.
have hb : PA Bot by firstorder.
repeat split.
+ case : p => /=.
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
* rewrite /SumSpace => a []; first by eauto with nfne.
move => [q0][q1]*.
have : wn q0 /\ wn q1 by hauto q:on.
qauto l:on use:wn_pair, pars'_wn.
+ case : p => /=.
* rewrite /ProdSpace.
move => a ha c PB hc hPB.
have hc' : wn c by sfirstorder.
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
have h : (forall a, ne a -> PB a) by sfirstorder.
suff : (forall a, wne a -> PB a) by hauto l:on.
move => a0 [a1 [h0 h1]].
eapply InterpExt_back_clos_star with (b := a1); eauto.
* rewrite /SumSpace.
move => a ha. left.
sfirstorder ctrs:rtc.
+ have wnA : wn A by firstorder.
apply wn_bind => //.
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
hauto lq:on.
- hauto l:on.
- hauto lq:on rew:off ctrs:rtc.
Qed.
Lemma adequacy i n A PA
(h : A : Tm n i PA) :
CR PA /\ wn A.
Proof.
move : i A PA h.
elim /Wf_nat.lt_wf_ind => i ih A PA.
simp InterpUniv.
apply adequacy_ext.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
Qed.
Lemma adequacy_wne i n A PA a : A : Tm n i PA -> wne a -> PA a.
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
Lemma adequacy_wn i n A PA (h : A : Tm n i PA) a : PA a -> wn a.
Proof. hauto q:on use:adequacy. Qed.
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
subst_Tm ρ (Γ i) k PA -> PA (ρ i).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, subst_Tm ρ A k PA /\ PA (subst_Tm ρ a).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, subst_Tm ρ A m PA /\ PA (subst_Tm ρ a).
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
(* Semantic context wellformedness *)
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ Γ i Univ j.
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
ρ_ok Γ (fun _ => Bot).
Proof.
rewrite /ρ_ok.
hauto q:on use:adequacy.
Qed.
Lemma ρ_ok_nil ρ :
ρ_ok null ρ.
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
subst_Tm ρ A i PA -> PA a ->
ρ_ok Γ ρ ->
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ).
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) ((scons a ρ)).
Proof.
move => h0 h1 h2.
rewrite /ρ_ok.
move => j.
destruct j as [j|].
- move => m PA0. asimpl => ?.
asimpl.
firstorder.
- move => m PA0. asimpl => h3.
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
@ -670,7 +455,7 @@ Proof.
rewrite /ρ_ok in hρ.
move => h.
rewrite /funcomp.
apply hρ with (k := m').
apply hρ with (m := m').
move : h. rewrite -.
by asimpl.
Qed.
@ -695,17 +480,6 @@ Proof.
hauto lq:on inv:option unfold:renaming_ok.
Qed.
Lemma SemWt_Wn n Γ (a : Tm n) A :
Γ a A ->
wn a /\ wn A.
Proof.
move => h.
have {}/h := ρ_ok_bot _ Γ => h.
have h0 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) A) by hauto l:on use:adequacy.
have h1 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) a)by hauto l:on use:adequacy_wn.
move {h}. hauto lq:on use:wn_antirenaming.
Qed.
Lemma SemWt_Univ n Γ (A : Tm n) i :
Γ A Univ i <->
forall ρ, ρ_ok Γ ρ -> exists S, subst_Tm ρ A i S.
@ -768,12 +542,12 @@ Qed.
Lemma ST_Conv n Γ (a : Tm n) A B i :
Γ a A ->
Γ B Univ i ->
Join.R A B ->
join A B ->
Γ a B.
Proof.
move => ha /SemWt_Univ h h0.
move => ρ hρ.
have {}h0 : Join.R (subst_Tm ρ A) (subst_Tm ρ B) by eauto using Join.substing.
have {}h0 : join (subst_Tm ρ A) (subst_Tm ρ B) by eauto using join_substing.
move /ha : (hρ){ha} => [m [PA [h1 h2]]].
move /h : (hρ){h} => [S hS].
have ? : PA = S by eauto using InterpUniv_Join'. subst.
@ -798,7 +572,7 @@ Proof.
intros (m & PB0 & hPB0 & hPB0').
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
apply : InterpUniv_back_clos; eauto.
apply : RPar'.AppAbs'; eauto using RPar'.refl.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
Qed.
@ -830,7 +604,7 @@ Proof.
simpl in hPPi.
move /InterpUniv_Bind_inv_nopf : hPPi.
move => [PA [hPA [hTot ?]]]. subst=>/=.
rewrite /SumSpace. right.
rewrite /SumSpace.
exists (subst_Tm ρ a), (subst_Tm ρ b).
split.
- hauto l:on use:Pars.substing.
@ -852,25 +626,24 @@ Proof.
move : h0 => [S][h2][h3]?. subst.
move : h1 => /=.
rewrite /SumSpace.
case; first by hauto lq:on use:adequacy_wne, wne_proj.
move => [a0 [b0 [h4 [h5 h6]]]].
exists m, S. split => //=.
have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars'.ProjCong.
have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'.
have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h4 : rtc RPar.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars.ProjCong.
have ? : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.refl, RPar.ProjPair'.
have : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
move => h.
apply : InterpUniv_back_clos_star; eauto.
Qed.
Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C :
RPar'.R B C ->
RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed.
Lemma substing_RPar n m (A : Tm (S n)) ρ (B : Tm m) C :
RPar.R B C ->
RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. hauto lq:on inv:option use:RPar.morphing, RPar.refl. Qed.
Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C :
rtc RPar'.R B C ->
rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed.
Lemma substing_RPars n m (A : Tm (S n)) ρ (B : Tm m) C :
rtc RPar.R B C ->
rtc RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar. Qed.
Lemma ST_Proj2 n Γ (a : Tm n) A B :
Γ a TBind TSig A B ->
@ -881,156 +654,17 @@ Proof.
move : h0 => [S][h2][h3]?. subst.
move : h1 => /=.
rewrite /SumSpace.
case.
- move => h.
have hp : forall p, wne (Proj p (subst_Tm ρ a)) by auto using wne_proj.
have hp0 := hp PL. have hp1 := hp PR => {hp}.
have : S (Proj PL (subst_Tm ρ a)) by hauto q:on use:adequacy_wne.
move /h3 => [PB]. asimpl. hauto lq:on use:adequacy_wne.
- move => [a0 [b0 [h4 [h5 h6]]]].
specialize h3 with (1 := h5).
move : h3 => [PB hPB].
have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars'.ProjCong.
have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
exists m, PB.
asimpl. split.
+ have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's.
move : hPB. asimpl.
eauto using InterpUnivN_back_preservation_star.
+ hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
move => [a0 [b0 [h4 [h5 h6]]]].
specialize h3 with (1 := h5).
move : h3 => [PB hPB].
have hr : forall p, rtc RPar.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars.ProjCong.
have hrl : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.ProjPair', RPar.refl.
have hrr : RPar.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar.ProjPair', RPar.refl.
exists m, PB.
asimpl. split.
- have h : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h : rtc RPar.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPars.
move : hPB. asimpl.
eauto using InterpUnivN_back_preservation_star.
- hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
Qed.
Lemma ne_nf_preservation n (a b : Tm n) : ERed.R b a -> (ne a -> ne b) /\ (nf a -> nf b).
Proof.
move => h. elim : n b a /h => //=.
- move => n a.
split => //=.
hauto lqb:on use:ne_nf_ren db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
Qed.
Fixpoint size_tm {n} (a : Tm n) :=
match a with
| VarTm _ => 1
| TBind _ A B => 1 + Nat.add (size_tm A) (size_tm B)
| Abs a => 1 + size_tm a
| App a b => 1 + Nat.add (size_tm a) (size_tm b)
| Proj p a => 1 + size_tm a
| Pair a b => 1 + Nat.add (size_tm a) (size_tm b)
| Bot => 1
| Const _ => 1
| Univ _ => 1
end.
Lemma size_tm_ren n m (ξ : fin n -> fin m) a : size_tm (ren_Tm ξ a) = size_tm a.
Proof.
move : m ξ. elim : n / a => //=; scongruence.
Qed.
#[export]Hint Rewrite size_tm_ren : size_tm.
Lemma size_η_lt n (a b : Tm n) :
ERed.R b a ->
size_tm b < size_tm a.
Proof.
move => h. elim : b a / h => //=; hauto l:on rew:db:size_tm.
Qed.
Lemma ered_local_confluence n (a b c : Tm n) :
ERed.R b a ->
ERed.R c a ->
exists d, rtc ERed.R d b /\ rtc ERed.R d c.
Proof.
move => h. move : c.
elim : n b a / h => n.
- move => a c.
elim /ERed.inv => //= _.
+ move => ? ? [*]. subst.
have : subst_Tm (scons Bot VarTm) (ren_Tm shift c) = (subst_Tm (scons Bot VarTm) (ren_Tm shift a))
by congruence.
asimpl => ?. subst.
eauto using rtc_refl.
+ move => a0 a1 ha ? [*]. subst.
elim /ERed.inv : ha => //= _.
* move => a1 a2 b0 ha ? [*]. subst.
have [a2 [h0 h1]] : exists a2, ERed.R a2 a /\ a1 = ren_Tm shift a2 by admit. subst.
eexists. split; cycle 1.
apply : relations.rtc_r; cycle 1.
apply ERed.AppEta.
apply rtc_refl.
eauto using relations.rtc_once.
* hauto q:on ctrs:rtc, ERed.R inv:ERed.R.
- move => a c ha.
elim /ERed.inv : ha => //= _.
+ hauto l:on.
+ move => a0 a1 b0 ha ? [*]. subst.
elim /ERed.inv : ha => //= _.
move => p a1 a2 ha ? [*]. subst.
exists a1. split. by apply relations.rtc_once.
apply : rtc_l. apply ERed.PairEta.
apply : rtc_l. apply ERed.PairCong1. eauto using ERed.ProjCong.
apply rtc_refl.
+ move => a0 b0 b1 ha ? [*]. subst.
elim /ERed.inv : ha => //= _ p a0 a1 h ? [*]. subst.
exists a0. split; first by apply relations.rtc_once.
apply : rtc_l; first by apply ERed.PairEta.
apply relations.rtc_once.
hauto lq:on ctrs:ERed.R.
- move => a0 a1 ha iha c.
elim /ERed.inv => //= _.
+ move => a2 ? [*]. subst.
elim /ERed.inv : ha => //=_.
* move => a1 a2 b0 ha ? [*] {iha}. subst.
have [a0 [h0 h1]] : exists a0, ERed.R a0 c /\ a1 = ren_Tm shift a0 by admit. subst.
exists a0. split; last by apply relations.rtc_once.
apply relations.rtc_once. apply ERed.AppEta.
* hauto q:on inv:ERed.R.
+ hauto l:on use:EReds.AbsCong.
- move => a0 a1 b ha iha c.
elim /ERed.inv => //= _.
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
+ hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
- move => a b0 b1 hb ihb c.
elim /ERed.inv => //=_.
+ move => a0 a1 a2 ha ? [*]. subst.
move {ihb}. exists (App a0 b0).
hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
- move => a0 a1 b ha iha c.
elim /ERed.inv => //= _.
+ move => ? ?[*]. subst.
elim /ERed.inv : ha => //= _ p a1 a2 h ? [*]. subst.
exists a1. split; last by apply relations.rtc_once.
apply : rtc_l. apply ERed.PairEta.
apply relations.rtc_once. hauto lq:on ctrs:ERed.R.
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
- move => a b0 b1 hb hc c. elim /ERed.inv => //= _.
+ move => ? ? [*]. subst.
elim /ERed.inv : hb => //= _ p a0 a1 ha ? [*]. subst.
move {hc}.
exists a0. split; last by apply relations.rtc_once.
apply : rtc_l; first by apply ERed.PairEta.
hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
- qauto l:on inv:ERed.R use:EReds.ProjCong.
- move => p A0 A1 B hA ihA.
move => c. elim/ERed.inv => //=.
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
- move => p A B0 B1 hB ihB c.
elim /ERed.inv => //=.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
Admitted.

View file

@ -1,251 +0,0 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
| T_Var i Γ A :
Γ ->
lookup i Γ A ->
Γ VarPTm i A
| T_Bind Γ i p (A : PTm) (B : PTm) :
Γ A PUniv i ->
cons A Γ B PUniv i ->
Γ PBind p A B PUniv i
| T_Abs Γ (a : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B
| T_App Γ (b a : PTm) A B :
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B
| T_Proj1 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PL a A
| T_Proj2 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ Γ i :
Γ ->
Γ PUniv i PUniv (S i)
| T_Nat Γ i :
Γ ->
Γ PNat PUniv i
| T_Zero Γ :
Γ ->
Γ PZero PNat
| T_Suc Γ (a : PTm) :
Γ a PNat ->
Γ PSuc a PNat
| T_Ind Γ P (a : PTm) b c i :
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c subst_PTm (scons a VarPTm) P
| T_Conv Γ (a : PTm) A B :
Γ a A ->
Γ A B ->
Γ a B
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| E_Refl Γ (a : PTm ) A :
Γ a A ->
Γ a a A
| E_Symmetric Γ (a b : PTm) A :
Γ a b A ->
Γ b a A
| E_Transitive Γ (a b c : PTm) A :
Γ a b A ->
Γ b c A ->
Γ a c A
(* Congruence *)
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_Abs Γ (a b : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a b B ->
Γ PAbs a PAbs b PBind PPi A B
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Pair Γ (a0 a1 b0 b1 : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B
| E_Proj1 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A
| E_Proj2 Γ i (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
(cons PNat Γ) P0 PUniv i ->
(cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
(cons P0 ((cons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0
| E_SucCong Γ (a b : PTm) :
Γ a b PNat ->
Γ PSuc a PSuc b PNat
| E_Conv Γ (a b : PTm) A B :
Γ a b A ->
Γ A B ->
Γ a b B
(* Beta *)
| E_AppAbs Γ (a : PTm) b A B i:
Γ PBind PPi A B PUniv i ->
Γ b A ->
(cons A Γ) a B ->
Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B
| E_ProjPair1 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PL (PPair a b) a A
| E_ProjPair2 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B
| E_IndZero Γ P i (b : PTm) c :
(cons PNat Γ) P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P
| E_IndSuc Γ P (a : PTm) b c i :
(cons PNat Γ) P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P
(* Eta *)
| E_AppEta Γ (b : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B
| E_PairEta Γ (a : PTm ) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a PBind PSig A B ->
Γ a PPair (PProj PL a) (PProj PR a) PBind PSig A B
with LEq : list PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| Su_Transitive Γ (A B C : PTm) :
Γ A B ->
Γ B C ->
Γ A C
(* Congruence *)
| Su_Univ Γ i j :
Γ ->
i <= j ->
Γ PUniv i PUniv j
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
Γ A0 PUniv i ->
Γ A1 A0 ->
(cons A0 Γ) B0 B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
Γ A1 PUniv i ->
Γ A0 A1 ->
(cons A1 Γ) B0 B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1
(* Injecting from equalities *)
| Su_Eq Γ (A : PTm) B i :
Γ A B PUniv i ->
Γ A B
(* Projection axioms *)
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ A1 A0
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ A0 A1
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : list PTm -> Prop :=
| Wff_Nil :
nil
| Wff_Cons Γ (A : PTm) i :
Γ ->
Γ A PUniv i ->
(* -------------------------------- *)
(cons A Γ)
where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
Scheme wf_ind := Induction for Wff Sort Prop
with wt_ind := Induction for Wt Sort Prop
with eq_ind := Induction for Eq Sort Prop
with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
(* Lemma lem : *)
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
(* Proof. apply wt_mutual. ... *)