Compare commits

..

5 commits

Author SHA1 Message Date
d8e040b2a6 Save 2025-01-04 19:26:18 -05:00
Yiyun Liu
7ffb8a912d Add some todos 2025-01-04 01:48:31 -05:00
Yiyun Liu
68207eb3bd Add a possible fix 2025-01-04 01:40:38 -05:00
Yiyun Liu
162db5296f Stuck 2025-01-04 01:31:02 -05:00
Yiyun Liu
f699ce2d4f Add prov_antiren 2025-01-04 00:45:42 -05:00
2 changed files with 328 additions and 1531 deletions

File diff suppressed because it is too large Load diff

View file

@ -6,22 +6,18 @@ Require Import ssreflect ssrbool.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..), rtc_subrel).
Import Psatz.
Definition ProdSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
Definition ProdSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop :=
forall a PB, PA a -> PF a PB -> PB (App b a).
Definition SumSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition SumSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop :=
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
Definition BindSpace p := if p is TPi then ProdSpace else SumSpace.
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
| InterpExt_Ne A :
ne A ->
A i ;; I wne
Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop :=
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
@ -33,12 +29,12 @@ Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) ->
Univ j i ;; I (I j)
| InterpExt_Step A A0 PA :
RPar'.R A A0 ->
RPar.R A A0 ->
A0 i ;; I PA ->
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) :
PF = I j ->
j < i ->
Univ j i ;; I PF.
@ -46,29 +42,28 @@ Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
Equations InterpUnivN (i : nat) : Tm 0 -> (Tm 0 -> Prop) -> Prop by wf i lt :=
InterpUnivN i := @InterpExt i
(fun j A =>
match j <? i with
| left _ => exists PA, InterpUnivN n j A PA
| left _ => exists PA, InterpUnivN j A PA
| right _ => False
end).
Arguments InterpUnivN {n}.
Arguments InterpUnivN .
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA ->
A i ;; I' PA.
Proof.
move => hI h.
elim : A PA /h.
- hauto q:on ctrs:InterpExt.
- hauto lq:on rew:off ctrs:InterpExt.
- hauto q:on ctrs:InterpExt.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA =
A i ;; I' PA.
@ -80,8 +75,8 @@ Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, A j PA).
Lemma InterpUnivN_nolt i :
InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
@ -94,12 +89,12 @@ Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed.
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P
(h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) /\
@ -108,35 +103,24 @@ Proof.
move E : (TBind p A B) h => T h.
move : A B E.
elim : T P / h => //.
- move => //= *. scongruence.
- hauto l:on.
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
hauto lq:on ctrs:InterpExt use:RPar_substone.
Qed.
Lemma InterpExt_Ne_inv n i A I P
(h : A : Tm n i ;; I P) :
ne A ->
P = wne.
Proof.
elim : A P / h => //=.
qauto l:on ctrs:prov inv:prov use:nf_refl.
Qed.
Lemma InterpExt_Univ_inv n i I j P
(h : Univ j : Tm n i ;; I P) :
Lemma InterpExt_Univ_inv i I j P
(h : Univ j i ;; I P) :
P = I j /\ j < i.
Proof.
move : h.
move E : (Univ j) => T h. move : j E.
elim : T P /h => //.
- move => //= *. scongruence.
- hauto l:on.
- hauto lq:on rew:off inv:RPar'.R.
- hauto lq:on rew:off inv:RPar.R.
Qed.
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA :
A i ;; I PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) ->
TBind p A B i ;; I (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB)).
@ -144,7 +128,7 @@ Proof.
move => h0 h1. apply InterpExt_Bind =>//.
Qed.
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA :
A i PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) ->
TBind p A B i (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB)).
@ -152,7 +136,7 @@ Proof.
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
Qed.
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
i <= j ->
A i ;; I PA ->
A j ;; I PA.
@ -162,87 +146,61 @@ Proof.
hauto l:on ctrs:InterpExt solve+:(by lia).
Qed.
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
A i PA -> forall j, i <= j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
RPar'.R A B ->
Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) :
RPar.R A B ->
B i ;; I P.
Proof.
move : B.
elim : A P / h; auto.
- hauto lq:on use:nf_refl ctrs:InterpExt.
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
elim /RPar'.inv : hT => //.
elim /RPar.inv : hT => //.
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
apply InterpExt_Bind; auto => a PB hPB0.
apply : ihPB; eauto.
sfirstorder use:RPar'.cong, RPar'.refl.
- hauto lq:on inv:RPar'.R ctrs:InterpExt.
sfirstorder use:RPar.cong, RPar.refl.
- hauto lq:on inv:RPar.R ctrs:InterpExt.
- move => A B P h0 h1 ih1 C hC.
have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC.
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : A i P) :
RPar'.R A B ->
Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : A i P) :
RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : B i ;; I P) :
rtc RPar'.R A B ->
Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : B i ;; I P) :
rtc RPar.R A B ->
A i ;; I P.
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : A i ;; I P) :
rtc RPar'.R A B ->
Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : A i ;; I P) :
rtc RPar.R A B ->
B i ;; I P.
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : A i P) :
rtc RPar'.R A B ->
Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : A i P) :
rtc RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : B i P) :
rtc RPar'.R A B ->
Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : B i P) :
rtc RPar.R A B ->
A i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
Function hfb {n} (A : Tm n) :=
match A with
| TBind _ _ _ => true
| Univ _ => true
| _ => ne A
end.
Inductive hfb_case {n} : Tm n -> Prop :=
| hfb_bind p A B :
hfb_case (TBind p A B)
| hfb_univ i :
hfb_case (Univ i)
| hfb_ne A :
ne A ->
hfb_case A.
Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop.
Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A.
Proof. case : A => //=. Qed.
Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A.
Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed.
Lemma InterpExtInv n i I (A : Tm n) PA :
Lemma InterpExtInv i I (A : Tm 0) PA :
A i ;; I PA ->
exists B, hfb B /\ rtc RPar'.R A B /\ B i ;; I PA.
exists B, hfb B /\ rtc RPar.R A B /\ B i ;; I PA.
Proof.
move => h. elim : A PA /h.
- hauto q:on ctrs:InterpExt, rtc use:ne_hfb.
- move => p A B PA PF hPA _ hPF hPF0 _.
exists (TBind p A B). repeat split => //=.
apply rtc_refl.
@ -252,22 +210,17 @@ Proof.
- hauto lq:on ctrs:rtc.
Qed.
Lemma RPar'_Par n (A B : Tm n) :
RPar'.R A B ->
Par.R A B.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
Lemma RPar's_Pars n (A B : Tm n) :
rtc RPar'.R A B ->
Lemma RPars_Pars (A B : Tm 0) :
rtc RPar.R A B ->
rtc Par.R A B.
Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed.
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
Lemma RPar's_join n (A B : Tm n) :
rtc RPar'.R A B -> join A B.
Proof. hauto lq:on ctrs:rtc use:RPar's_Pars. Qed.
Lemma RPars_join (A B : Tm 0) :
rtc RPar.R A B -> join A B.
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b :
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b :
(forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a, PA a -> exists PB0, PF0 a PB0) ->
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
@ -288,76 +241,21 @@ Proof.
hauto lq:on rew:off.
Qed.
Lemma ne_prov_inv n (a : Tm n) :
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
Proof.
elim : n /a => //=.
- hauto lq:on ctrs:prov.
- hauto lq:on rew:off ctrs:prov b:on.
- hauto lq:on ctrs:prov.
- move => n.
have : @prov n Bot Bot by auto using P_Bot.
tauto.
Qed.
Lemma ne_pars_inv n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
Proof.
move /ne_prov_inv.
sfirstorder use:prov_pars.
Qed.
Lemma ne_pars_extract n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
Lemma join_bind_ne_contra n p (A : Tm n) B C :
ne C ->
join (TBind p A B) C -> False.
Proof.
move => hC [D [h0 h1]].
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
sfirstorder.
Qed.
Lemma join_univ_ne_contra n i C :
ne C ->
join (Univ i : Tm n) C -> False.
Proof.
move => hC [D [h0 h1]].
move /pars_univ_inv : h0 => ?.
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
sfirstorder.
Qed.
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
Lemma InterpExt_Join i I (A B : Tm 0) PA PB :
A i ;; I PA ->
B i ;; I PB ->
join A B ->
PA = PB.
Proof.
move => h. move : B PB. elim : A PA /h.
- move => A hA B PB /InterpExtInv.
move => [B0 []].
move /hfb_caseP. elim/hfb_inv => _.
+ move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso.
eauto with join.
+ move => ? ? [/RPar's_join *]. subst. exfalso.
eauto with join.
+ hauto lq:on use:InterpExt_Ne_inv.
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
move => [B0 []].
move /hfb_caseP.
elim /hfb_inv => _.
rename B0 into B00.
+ move => p0 A0 B0 ? [hr hPi]. subst.
case : B0 => //=.
+ move => p0 A0 B0 _ [hr hPi].
move /InterpExt_Bind_inv : hPi.
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
move => hjoin.
have{}hr : join U (TBind p0 A0 B0) by auto using RPar's_join.
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
move => [? [h0 h1]]. subst.
@ -369,64 +267,62 @@ Proof.
move => a PB PB0 hPB hPB0.
apply : ihPF; eauto.
by apply join_substing.
+ move => j ?. subst.
+ move => j _.
move => [h0 h1] h.
have ? : join U (Univ j) by eauto using RPar's_join.
have ? : join U (Univ j) by eauto using RPars_join.
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
move => ?. exfalso.
eauto using join_univ_pi_contra.
+ move => A0 ? ? [/RPar's_join ?]. subst.
move => _ ?. exfalso. eauto with join.
- move => j ? B PB /InterpExtInv.
move => [? []]. move/hfb_caseP.
elim /hfb_inv => //= _.
move => [+ []]. case => //=.
+ move => p A0 B0 _ [].
move /RPar's_join => *.
exfalso. eauto with join.
+ move => m _ [/RPar's_join h0 + h1].
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
move /RPars_join => *.
have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive.
exfalso.
eauto using join_univ_pi_contra.
+ move => m _ [/RPars_join h0 + h1].
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive.
subst.
move /InterpExt_Univ_inv. firstorder.
+ move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join.
- move => A A0 PA h.
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar'_Par, relations.rtc_once.
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
eauto using join_transitive.
Qed.
Lemma InterpUniv_Join n i (A B : Tm n) PA PB :
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
A i PA ->
B i PB ->
join A B ->
PA = PB.
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
(h : TBind p A B i P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
A i PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA PF.
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
Lemma InterpUniv_Univ_inv n i j P
Lemma InterpUniv_Univ_inv i j P
(h : Univ j i P) :
P = (fun (A : Tm n) => exists PA, A j PA) /\ j < i.
P = (fun (A : Tm 0) => exists PA, A j PA) /\ j < i.
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
Lemma InterpExt_Functional i I (A B : Tm 0) PA PB :
A i ;; I PA ->
A i ;; I PB ->
PA = PB.
Proof. hauto use:InterpExt_Join, join_refl. Qed.
Lemma InterpUniv_Functional n i (A : Tm n) PA PB :
Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
A i PA ->
A i PB ->
PA = PB.
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB :
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
A i PA ->
B j PB ->
join A B ->
@ -439,16 +335,16 @@ Proof.
eauto using InterpUniv_Join.
Qed.
Lemma InterpUniv_Functional' n i j A PA PB :
A : Tm n i PA ->
Lemma InterpUniv_Functional' i j A PA PB :
A i PA ->
A j PB ->
PA = PB.
Proof.
hauto l:on use:InterpUniv_Join', join_refl.
Qed.
Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop),
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm 0 -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB).
@ -469,42 +365,34 @@ Proof.
split; hauto q:on use:InterpExt_Functional.
Qed.
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : TBind p A B i P) :
exists (PA : Tm n -> Prop),
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : TBind p A B i P) :
exists (PA : Tm 0 -> Prop),
A i PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB).
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
Lemma InterpExt_back_clos i I (A : Tm 0) PA :
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (RPar'.R a b) ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
move => hI h.
elim : A PA /h.
- hauto q:on ctrs:rtc unfold:wne.
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
case : p => //=.
+ have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a)
by hauto lq:on ctrs:RPar'.R use:RPar'.refl.
+ have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a)
by hauto lq:on ctrs:RPar.R use:RPar.refl.
hauto lq:on rew:off unfold:ProdSpace.
+ hauto lq:on ctrs:rtc unfold:SumSpace.
- eauto.
- eauto.
Qed.
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (rtc RPar'.R a b) ->
PA b -> PA a.
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
Lemma InterpUniv_back_clos i (A : Tm 0) PA :
A i PA ->
forall a b, (RPar'.R a b) ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
simp InterpUniv.
@ -512,9 +400,9 @@ Proof.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
Qed.
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
Lemma InterpUniv_back_clos_star i (A : Tm 0) PA :
A i PA ->
forall a b, rtc RPar'.R a b ->
forall a b, rtc RPar.R a b ->
PA b -> PA a.
Proof.
move => h a b.
@ -522,101 +410,30 @@ Proof.
hauto lq:on use:InterpUniv_back_clos.
Qed.
Lemma pars'_wn {n} a b :
rtc RPar'.R a b ->
@wn n b ->
wn a.
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA,
subst_Tm ρ (Γ i) m PA -> PA (ρ i).
(* P identifies a set of "reducibility candidates" *)
Definition CR {n} (P : Tm n -> Prop) :=
(forall a, P a -> wn a) /\
(forall a, ne a -> P a).
Lemma adequacy_ext i n I A PA
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
(hI : forall j, j < i -> CR (I j))
(h : A : Tm n i ;; I PA) :
CR PA /\ wn A.
Proof.
elim : A PA / h.
- hauto unfold:wne use:wne_wn.
- move => p A B PA PF hA hPA hTot hRes ihPF.
rewrite /CR.
have hb : PA Bot by firstorder.
repeat split.
+ case : p => /=.
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
* rewrite /SumSpace => a []; first by eauto with nfne.
move => [q0][q1]*.
have : wn q0 /\ wn q1 by hauto q:on.
qauto l:on use:wn_pair, pars'_wn.
+ case : p => /=.
* rewrite /ProdSpace.
move => a ha c PB hc hPB.
have hc' : wn c by sfirstorder.
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
have h : (forall a, ne a -> PB a) by sfirstorder.
suff : (forall a, wne a -> PB a) by hauto l:on.
move => a0 [a1 [h0 h1]].
eapply InterpExt_back_clos_star with (b := a1); eauto.
* rewrite /SumSpace.
move => a ha. left.
sfirstorder ctrs:rtc.
+ have wnA : wn A by firstorder.
apply wn_bind => //.
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
hauto lq:on.
- hauto l:on.
- hauto lq:on rew:off ctrs:rtc.
Qed.
Lemma adequacy i n A PA
(h : A : Tm n i PA) :
CR PA /\ wn A.
Proof.
move : i A PA h.
elim /Wf_nat.lt_wf_ind => i ih A PA.
simp InterpUniv.
apply adequacy_ext.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
Qed.
Lemma adequacy_wne i n A PA a : A : Tm n i PA -> wne a -> PA a.
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
Lemma adequacy_wn i n A PA (h : A : Tm n i PA) a : PA a -> wn a.
Proof. hauto q:on use:adequacy. Qed.
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
subst_Tm ρ (Γ i) k PA -> PA (ρ i).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, subst_Tm ρ A k PA /\ PA (subst_Tm ρ a).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, subst_Tm ρ A m PA /\ PA (subst_Tm ρ a).
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
(* Semantic context wellformedness *)
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ Γ i Univ j.
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
ρ_ok Γ (fun _ => Bot).
Proof.
rewrite /ρ_ok.
hauto q:on use:adequacy.
Qed.
Lemma ρ_ok_nil ρ :
ρ_ok null ρ.
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
subst_Tm ρ A i PA -> PA a ->
ρ_ok Γ ρ ->
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ).
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) ((scons a ρ)).
Proof.
move => h0 h1 h2.
rewrite /ρ_ok.
move => j.
destruct j as [j|].
- move => m PA0. asimpl => ?.
asimpl.
firstorder.
- move => m PA0. asimpl => h3.
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
@ -638,7 +455,7 @@ Proof.
rewrite /ρ_ok in hρ.
move => h.
rewrite /funcomp.
apply hρ with (k := m').
apply hρ with (m := m').
move : h. rewrite -.
by asimpl.
Qed.
@ -663,17 +480,6 @@ Proof.
hauto lq:on inv:option unfold:renaming_ok.
Qed.
Lemma SemWt_Wn n Γ (a : Tm n) A :
Γ a A ->
wn a /\ wn A.
Proof.
move => h.
have {}/h := ρ_ok_bot _ Γ => h.
have h0 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) A) by hauto l:on use:adequacy.
have h1 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) a)by hauto l:on use:adequacy_wn.
move {h}. hauto lq:on use:wn_antirenaming.
Qed.
Lemma SemWt_Univ n Γ (A : Tm n) i :
Γ A Univ i <->
forall ρ, ρ_ok Γ ρ -> exists S, subst_Tm ρ A i S.
@ -766,7 +572,7 @@ Proof.
intros (m & PB0 & hPB0 & hPB0').
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
apply : InterpUniv_back_clos; eauto.
apply : RPar'.AppAbs'; eauto using RPar'.refl.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
Qed.
@ -798,7 +604,7 @@ Proof.
simpl in hPPi.
move /InterpUniv_Bind_inv_nopf : hPPi.
move => [PA [hPA [hTot ?]]]. subst=>/=.
rewrite /SumSpace. right.
rewrite /SumSpace.
exists (subst_Tm ρ a), (subst_Tm ρ b).
split.
- hauto l:on use:Pars.substing.
@ -820,25 +626,24 @@ Proof.
move : h0 => [S][h2][h3]?. subst.
move : h1 => /=.
rewrite /SumSpace.
case; first by hauto lq:on use:adequacy_wne, wne_proj.
move => [a0 [b0 [h4 [h5 h6]]]].
exists m, S. split => //=.
have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars'.ProjCong.
have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'.
have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h4 : rtc RPar.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars.ProjCong.
have ? : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.refl, RPar.ProjPair'.
have : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
move => h.
apply : InterpUniv_back_clos_star; eauto.
Qed.
Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C :
RPar'.R B C ->
RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed.
Lemma substing_RPar n m (A : Tm (S n)) ρ (B : Tm m) C :
RPar.R B C ->
RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. hauto lq:on inv:option use:RPar.morphing, RPar.refl. Qed.
Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C :
rtc RPar'.R B C ->
rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed.
Lemma substing_RPars n m (A : Tm (S n)) ρ (B : Tm m) C :
rtc RPar.R B C ->
rtc RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar. Qed.
Lemma ST_Proj2 n Γ (a : Tm n) A B :
Γ a TBind TSig A B ->
@ -849,155 +654,17 @@ Proof.
move : h0 => [S][h2][h3]?. subst.
move : h1 => /=.
rewrite /SumSpace.
case.
- move => h.
have hp : forall p, wne (Proj p (subst_Tm ρ a)) by auto using wne_proj.
have hp0 := hp PL. have hp1 := hp PR => {hp}.
have : S (Proj PL (subst_Tm ρ a)) by hauto q:on use:adequacy_wne.
move /h3 => [PB]. asimpl. hauto lq:on use:adequacy_wne.
- move => [a0 [b0 [h4 [h5 h6]]]].
move => [a0 [b0 [h4 [h5 h6]]]].
specialize h3 with (1 := h5).
move : h3 => [PB hPB].
have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars'.ProjCong.
have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
have hr : forall p, rtc RPar.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars.ProjCong.
have hrl : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.ProjPair', RPar.refl.
have hrr : RPar.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar.ProjPair', RPar.refl.
exists m, PB.
asimpl. split.
+ have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's.
- have h : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
have {}h : rtc RPar.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPars.
move : hPB. asimpl.
eauto using InterpUnivN_back_preservation_star.
+ hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
- hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
Qed.
Lemma ne_nf_preservation n (a b : Tm n) : ERed.R b a -> (ne a -> ne b) /\ (nf a -> nf b).
Proof.
move => h. elim : n b a /h => //=.
- move => n a.
split => //=.
hauto lqb:on use:ne_nf_ren db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
- hauto lqb:on db:nfne.
Qed.
Fixpoint size_tm {n} (a : Tm n) :=
match a with
| VarTm _ => 1
| TBind _ A B => 1 + Nat.add (size_tm A) (size_tm B)
| Abs a => 1 + size_tm a
| App a b => 1 + Nat.add (size_tm a) (size_tm b)
| Proj p a => 1 + size_tm a
| Pair a b => 1 + Nat.add (size_tm a) (size_tm b)
| Bot => 1
| Univ _ => 1
end.
Lemma size_tm_ren n m (ξ : fin n -> fin m) a : size_tm (ren_Tm ξ a) = size_tm a.
Proof.
move : m ξ. elim : n / a => //=; scongruence.
Qed.
#[export]Hint Rewrite size_tm_ren : size_tm.
Lemma size_η_lt n (a b : Tm n) :
ERed.R b a ->
size_tm b < size_tm a.
Proof.
move => h. elim : b a / h => //=; hauto l:on rew:db:size_tm.
Qed.
Lemma ered_local_confluence n (a b c : Tm n) :
ERed.R b a ->
ERed.R c a ->
exists d, rtc ERed.R d b /\ rtc ERed.R d c.
Proof.
move => h. move : c.
elim : n b a / h => n.
- move => a c.
elim /ERed.inv => //= _.
+ move => ? ? [*]. subst.
have : subst_Tm (scons Bot VarTm) (ren_Tm shift c) = (subst_Tm (scons Bot VarTm) (ren_Tm shift a))
by congruence.
asimpl => ?. subst.
eauto using rtc_refl.
+ move => a0 a1 ha ? [*]. subst.
elim /ERed.inv : ha => //= _.
* move => a1 a2 b0 ha ? [*]. subst.
have [a2 [h0 h1]] : exists a2, ERed.R a2 a /\ a1 = ren_Tm shift a2 by admit. subst.
eexists. split; cycle 1.
apply : relations.rtc_r; cycle 1.
apply ERed.AppEta.
apply rtc_refl.
eauto using relations.rtc_once.
* hauto q:on ctrs:rtc, ERed.R inv:ERed.R.
- move => a c ha.
elim /ERed.inv : ha => //= _.
+ hauto l:on.
+ move => a0 a1 b0 ha ? [*]. subst.
elim /ERed.inv : ha => //= _.
move => p a1 a2 ha ? [*]. subst.
exists a1. split. by apply relations.rtc_once.
apply : rtc_l. apply ERed.PairEta.
apply : rtc_l. apply ERed.PairCong1. eauto using ERed.ProjCong.
apply rtc_refl.
+ move => a0 b0 b1 ha ? [*]. subst.
elim /ERed.inv : ha => //= _ p a0 a1 h ? [*]. subst.
exists a0. split; first by apply relations.rtc_once.
apply : rtc_l; first by apply ERed.PairEta.
apply relations.rtc_once.
hauto lq:on ctrs:ERed.R.
- move => a0 a1 ha iha c.
elim /ERed.inv => //= _.
+ move => a2 ? [*]. subst.
elim /ERed.inv : ha => //=_.
* move => a1 a2 b0 ha ? [*] {iha}. subst.
have [a0 [h0 h1]] : exists a0, ERed.R a0 c /\ a1 = ren_Tm shift a0 by admit. subst.
exists a0. split; last by apply relations.rtc_once.
apply relations.rtc_once. apply ERed.AppEta.
* hauto q:on inv:ERed.R.
+ hauto l:on use:EReds.AbsCong.
- move => a0 a1 b ha iha c.
elim /ERed.inv => //= _.
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
+ hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
- move => a b0 b1 hb ihb c.
elim /ERed.inv => //=_.
+ move => a0 a1 a2 ha ? [*]. subst.
move {ihb}. exists (App a0 b0).
hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
- move => a0 a1 b ha iha c.
elim /ERed.inv => //= _.
+ move => ? ?[*]. subst.
elim /ERed.inv : ha => //= _ p a1 a2 h ? [*]. subst.
exists a1. split; last by apply relations.rtc_once.
apply : rtc_l. apply ERed.PairEta.
apply relations.rtc_once. hauto lq:on ctrs:ERed.R.
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
- move => a b0 b1 hb hc c. elim /ERed.inv => //= _.
+ move => ? ? [*]. subst.
elim /ERed.inv : hb => //= _ p a0 a1 ha ? [*]. subst.
move {hc}.
exists a0. split; last by apply relations.rtc_once.
apply : rtc_l; first by apply ERed.PairEta.
hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
- qauto l:on inv:ERed.R use:EReds.ProjCong.
- move => p A0 A1 B hA ihA.
move => c. elim/ERed.inv => //=.
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
- move => p A B0 B1 hB ihB c.
elim /ERed.inv => //=.
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
Admitted.