Compare commits
4 commits
main
...
normalizat
Author | SHA1 | Date | |
---|---|---|---|
|
7ffb8a912d | ||
|
68207eb3bd | ||
|
162db5296f | ||
|
f699ce2d4f |
1 changed files with 56 additions and 67 deletions
|
@ -1064,12 +1064,16 @@ Definition prov_univ {n} i0 (a : Tm n) :=
|
||||||
(* Can consider combine prov and provU *)
|
(* Can consider combine prov and provU *)
|
||||||
#[tactic="prov_tac"]Equations prov {n} (h : Tm n) (a : Tm n) : Prop by wf (depth_tm a) lt :=
|
#[tactic="prov_tac"]Equations prov {n} (h : Tm n) (a : Tm n) : Prop by wf (depth_tm a) lt :=
|
||||||
prov h (TBind p0 A0 B0) := prov_bind p0 A0 B0 h;
|
prov h (TBind p0 A0 B0) := prov_bind p0 A0 B0 h;
|
||||||
|
(* TODOS *)
|
||||||
|
(* Try forall b, prov h (a {b /x})? *)
|
||||||
|
(* Replace the parallel red from I_Red with Strong normalization *)
|
||||||
|
(* Prove the uniqueness of eta normal form for terms in beta normal form *)
|
||||||
prov h (Abs a) := prov (ren_Tm shift h) a;
|
prov h (Abs a) := prov (ren_Tm shift h) a;
|
||||||
prov h (App a b) := prov h a;
|
prov h (App a b) := prov h a;
|
||||||
prov h (Pair a b) := prov h a /\ prov h b;
|
prov h (Pair a b) := prov h a /\ prov h b;
|
||||||
prov h (Proj p a) := prov h a;
|
prov h (Proj p a) := prov h a;
|
||||||
prov h Bot := False;
|
prov h Bot := h = Bot;
|
||||||
prov h (VarTm _) := False;
|
prov h (VarTm i) := h = VarTm i;
|
||||||
prov h (Univ i) := prov_univ i h .
|
prov h (Univ i) := prov_univ i h .
|
||||||
|
|
||||||
#[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
|
#[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
|
||||||
|
@ -1099,21 +1103,6 @@ Proof.
|
||||||
- sfirstorder.
|
- sfirstorder.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
|
|
||||||
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
|
|
||||||
Proof.
|
|
||||||
move => ih.
|
|
||||||
suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder.
|
|
||||||
elim.
|
|
||||||
- move => n a h.
|
|
||||||
apply ih. lia.
|
|
||||||
- move => n ih0 m a h.
|
|
||||||
apply : ih.
|
|
||||||
move => m0 b h0.
|
|
||||||
apply : ih0.
|
|
||||||
lia.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a :
|
Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a :
|
||||||
prov_bind p A B a ->
|
prov_bind p A B a ->
|
||||||
prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
|
prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
|
||||||
|
@ -1126,7 +1115,7 @@ Lemma prov_ren n m (ξ : fin n -> fin m) h a :
|
||||||
prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a).
|
prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a).
|
||||||
Proof.
|
Proof.
|
||||||
move : m ξ h. elim : n / a.
|
move : m ξ h. elim : n / a.
|
||||||
- sfirstorder rew:db:prov.
|
- hauto q:on rew:db:prov.
|
||||||
- move => n a ih m ξ h.
|
- move => n a ih m ξ h.
|
||||||
simp prov.
|
simp prov.
|
||||||
move /ih => {ih}.
|
move /ih => {ih}.
|
||||||
|
@ -1140,60 +1129,58 @@ Proof.
|
||||||
- qauto l:on rew:db:prov.
|
- qauto l:on rew:db:prov.
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
- hauto l:on use:prov_bind_ren rew:db:prov.
|
- hauto l:on use:prov_bind_ren rew:db:prov.
|
||||||
- sfirstorder.
|
|
||||||
- hauto l:on inv:Tm rew:db:prov.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Definition hfb {n} (a : Tm n) :=
|
|
||||||
match a with
|
|
||||||
| TBind _ _ _ => true
|
|
||||||
| Univ _ => true
|
|
||||||
| _ => false
|
|
||||||
end.
|
|
||||||
|
|
||||||
Lemma prov_morph n m (ρ : fin n -> Tm m) h a :
|
|
||||||
prov h a ->
|
|
||||||
hfb h ->
|
|
||||||
prov (subst_Tm ρ h) (subst_Tm ρ a).
|
|
||||||
Proof.
|
|
||||||
move : m ρ h. elim : n / a.
|
|
||||||
- hauto q:on rew:db:prov.
|
|
||||||
- move => n a ih m ρ h + hb.
|
|
||||||
simp prov => /=.
|
|
||||||
move /ih => {ih}.
|
|
||||||
move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)).
|
|
||||||
simp prov. by asimpl.
|
|
||||||
- hauto q:on rew:db:prov.
|
|
||||||
- hauto q:on rew:db:prov.
|
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
- move => n p A ihA B ihB m ρ h /=. simp prov => //= + h0.
|
|
||||||
case : h h0 => //=.
|
|
||||||
move => p0 A0 B0 _ [? [h1 h2]]. subst.
|
|
||||||
hauto l:on use:Pars.substing rew:db:prov.
|
|
||||||
- qauto rew:db:prov.
|
|
||||||
- hauto l:on inv:Tm rew:db:prov.
|
- hauto l:on inv:Tm rew:db:prov.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u.
|
Lemma prov_antiren n m (ξ : fin n -> fin m) h a:
|
||||||
Proof. move : m ξ. elim : n /u =>//=. Qed.
|
prov (ren_Tm ξ h) a -> exists a', ren_Tm ξ a' = a /\ prov h a'.
|
||||||
|
|
||||||
Hint Rewrite @ren_hfb : prov.
|
|
||||||
|
|
||||||
Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b.
|
|
||||||
Proof.
|
Proof.
|
||||||
move => + + h. move : u.
|
move E : (ren_Tm ξ h) => H.
|
||||||
|
move : ξ H E.
|
||||||
|
elim : m / a => m.
|
||||||
|
- move => i ξ H ?. subst. simp prov.
|
||||||
|
case : h => //=.
|
||||||
|
move => j [?]. subst.
|
||||||
|
exists (VarTm j). firstorder.
|
||||||
|
- move => a iha ξ ? ?. subst.
|
||||||
|
simp prov.
|
||||||
|
asimpl.
|
||||||
|
move => {}/iha iha.
|
||||||
|
specialize iha with (1 := eq_refl).
|
||||||
|
move : iha => [a' [h1 h2]]. subst.
|
||||||
|
exists (Abs (ren_Tm shift a')).
|
||||||
|
split. by asimpl.
|
||||||
|
simp prov. hauto lq:on use:prov_ren.
|
||||||
|
- move => a iha b ihb ξ ? ?. subst.
|
||||||
|
simp prov.
|
||||||
|
move /iha. move/(_ ξ eq_refl) => [a' [? ?]] {iha ihb}. subst.
|
||||||
|
(* Doesn't hold *)
|
||||||
|
have : exists b', ren_Tm ξ b' = b by admit.
|
||||||
|
move => [b' ?]. subst.
|
||||||
|
exists (App a' b').
|
||||||
|
split => //=.
|
||||||
|
simp prov.
|
||||||
|
Admitted.
|
||||||
|
|
||||||
|
(* Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. *)
|
||||||
|
(* Proof. move : m ξ. elim : n /u =>//=. Qed. *)
|
||||||
|
|
||||||
|
(* Hint Rewrite @ren_hfb : prov. *)
|
||||||
|
|
||||||
|
Lemma prov_par n (u : Tm n) a b : prov u a -> Par.R a b -> prov u b.
|
||||||
|
Proof.
|
||||||
|
move => + h. move : u.
|
||||||
elim : n a b /h.
|
elim : n a b /h.
|
||||||
- move => n a0 a1 b0 b1 ha iha hb ihb u /=.
|
- move => n a0 a1 b0 b1 ha iha hb ihb u /=.
|
||||||
simp prov => h h0.
|
simp prov => h.
|
||||||
have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb.
|
have [a1' [? ?]] : exists a1', ren_Tm shift a1' = a1 /\ prov u a1'
|
||||||
move /iha /(_ h1) : h.
|
by eauto using prov_antiren.
|
||||||
move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1).
|
subst; by asimpl.
|
||||||
by asimpl.
|
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
- move => n a0 a1 ha iha A B. simp prov. move /iha.
|
- hauto l:on use:prov_ren rew:db:prov.
|
||||||
hauto l:on use:prov_ren.
|
|
||||||
- hauto l:on rew:db:prov.
|
- hauto l:on rew:db:prov.
|
||||||
- simp prov.
|
- simp prov.
|
||||||
- hauto lq:on rew:db:prov.
|
- hauto lq:on rew:db:prov.
|
||||||
|
@ -1203,21 +1190,22 @@ Proof.
|
||||||
- move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov.
|
- move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov.
|
||||||
case : u => //=.
|
case : u => //=.
|
||||||
move => p0 A B [? [h2 h3]]. subst.
|
move => p0 A B [? [h2 h3]]. subst.
|
||||||
move => ?. repeat split => //=;
|
repeat split => //=;
|
||||||
hauto l:on use:rtc_r rew:db:prov.
|
hauto l:on use:rtc_r rew:db:prov.
|
||||||
- sfirstorder.
|
- sfirstorder.
|
||||||
- sfirstorder.
|
- sfirstorder.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b.
|
Lemma prov_pars n (u : Tm n) a b : prov u a -> rtc Par.R a b -> prov u b.
|
||||||
Proof.
|
Proof.
|
||||||
induction 3; hauto lq:on ctrs:rtc use:prov_par.
|
induction 2; hauto lq:on ctrs:rtc use:prov_par.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Definition prov_extract_spec {n} u (a : Tm n) :=
|
Definition prov_extract_spec {n} u (a : Tm n) :=
|
||||||
match u with
|
match u with
|
||||||
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
|
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
|
||||||
| Univ i => extract a = Univ i
|
| Univ i => extract a = Univ i
|
||||||
|
| VarTm i => extract a = VarTm i
|
||||||
| _ => True
|
| _ => True
|
||||||
end.
|
end.
|
||||||
|
|
||||||
|
@ -1225,7 +1213,9 @@ Lemma prov_extract n u (a : Tm n) :
|
||||||
prov u a -> prov_extract_spec u a.
|
prov u a -> prov_extract_spec u a.
|
||||||
Proof.
|
Proof.
|
||||||
move : u. elim : n / a => //=.
|
move : u. elim : n / a => //=.
|
||||||
|
- hauto l:on inv:Tm rew:db:prov, extract.
|
||||||
- move => n a ih [] //=.
|
- move => n a ih [] //=.
|
||||||
|
+ hauto q:on rew:db:extract, prov.
|
||||||
+ move => p A B /=.
|
+ move => p A B /=.
|
||||||
simp prov. move /ih {ih}.
|
simp prov. move /ih {ih}.
|
||||||
simpl.
|
simpl.
|
||||||
|
@ -1248,6 +1238,7 @@ Proof.
|
||||||
- hauto inv:Tm l:on rew:db:prov, extract.
|
- hauto inv:Tm l:on rew:db:prov, extract.
|
||||||
- hauto l:on inv:Tm rew:db:prov, extract.
|
- hauto l:on inv:Tm rew:db:prov, extract.
|
||||||
- hauto l:on inv:Tm rew:db:prov, extract.
|
- hauto l:on inv:Tm rew:db:prov, extract.
|
||||||
|
- hauto l:on inv:Tm rew:db:prov, extract.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
||||||
|
@ -1623,7 +1614,6 @@ Lemma pars_univ_inv n i (c : Tm n) :
|
||||||
Proof.
|
Proof.
|
||||||
have : prov (Univ i) (Univ i : Tm n) by sfirstorder.
|
have : prov (Univ i) (Univ i : Tm n) by sfirstorder.
|
||||||
move : prov_pars. repeat move/[apply].
|
move : prov_pars. repeat move/[apply].
|
||||||
move /(_ ltac:(reflexivity)).
|
|
||||||
by move/prov_extract.
|
by move/prov_extract.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
@ -1634,7 +1624,6 @@ Lemma pars_pi_inv n p (A : Tm n) B C :
|
||||||
Proof.
|
Proof.
|
||||||
have : prov (TBind p A B) (TBind p A B) by sfirstorder.
|
have : prov (TBind p A B) (TBind p A B) by sfirstorder.
|
||||||
move : prov_pars. repeat move/[apply].
|
move : prov_pars. repeat move/[apply].
|
||||||
move /(_ eq_refl).
|
|
||||||
by move /prov_extract.
|
by move /prov_extract.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue