Compare commits
1 commit
Author | SHA1 | Date | |
---|---|---|---|
a9de3013c9 |
1 changed files with 18 additions and 11 deletions
|
@ -133,12 +133,10 @@ End RPar.
|
||||||
Module EPar.
|
Module EPar.
|
||||||
Inductive R {n} : Tm n -> Tm n -> Prop :=
|
Inductive R {n} : Tm n -> Tm n -> Prop :=
|
||||||
(****************** Eta ***********************)
|
(****************** Eta ***********************)
|
||||||
| AppEta a0 a1 :
|
| AppEta a :
|
||||||
R a0 a1 ->
|
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
|
||||||
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
|
| PairEta a :
|
||||||
| PairEta a0 a1 :
|
R a (Pair (Proj1 a) (Proj2 a))
|
||||||
R a0 a1 ->
|
|
||||||
R a0 (Pair (Proj1 a1) (Proj2 a1))
|
|
||||||
|
|
||||||
(*************** Congruence ********************)
|
(*************** Congruence ********************)
|
||||||
| Var i : R (VarTm i) (VarTm i)
|
| Var i : R (VarTm i) (VarTm i)
|
||||||
|
@ -165,20 +163,29 @@ Module EPar.
|
||||||
induction a; hauto lq:on ctrs:EPar.R.
|
induction a; hauto lq:on ctrs:EPar.R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma AppEta' n (a b : Tm n) :
|
||||||
|
b = (Abs (App (ren_Tm shift a) (VarTm var_zero))) ->
|
||||||
|
R a b.
|
||||||
|
Proof. move => ->. by apply AppEta. Qed.
|
||||||
|
|
||||||
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
|
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
|
||||||
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
|
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
|
||||||
Proof.
|
Proof.
|
||||||
move => h. move : m ξ.
|
move => h. move : m ξ.
|
||||||
elim : n a b /h.
|
elim : n a b /h.
|
||||||
|
move => n a m ξ /=.
|
||||||
move => n a0 a1 ha iha m ξ /=.
|
apply AppEta'. by asimpl.
|
||||||
move /(_ _ ξ) /AppEta : iha.
|
|
||||||
by asimpl.
|
|
||||||
|
|
||||||
all : qauto ctrs:R.
|
all : qauto ctrs:R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
|
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
|
||||||
|
|
||||||
|
Lemma morph n m (a : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
|
||||||
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
|
R (subst_Tm ρ0 a) (subst_Tm ρ1 a).
|
||||||
|
Proof.
|
||||||
|
move : m ρ0 ρ1.
|
||||||
|
|
||||||
End EPar.
|
End EPar.
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue