Compare commits
8 commits
main
...
commute-ru
Author | SHA1 | Date | |
---|---|---|---|
7178a50026 | |||
76050bc511 | |||
bc848e91ea | |||
c9fcafb47f | |||
d0760cd9db | |||
53bef034ad | |||
bec803949f | |||
b750ea4095 |
3 changed files with 1005 additions and 554 deletions
|
@ -2,6 +2,7 @@ nat : Type
|
||||||
Tm(VarTm) : Type
|
Tm(VarTm) : Type
|
||||||
PTag : Type
|
PTag : Type
|
||||||
TTag : Type
|
TTag : Type
|
||||||
|
bool : Type
|
||||||
|
|
||||||
TPi : TTag
|
TPi : TTag
|
||||||
TSig : TTag
|
TSig : TTag
|
||||||
|
@ -14,3 +15,6 @@ Proj : PTag -> Tm -> Tm
|
||||||
TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm
|
TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm
|
||||||
Bot : Tm
|
Bot : Tm
|
||||||
Univ : nat -> Tm
|
Univ : nat -> Tm
|
||||||
|
Bool : Tm
|
||||||
|
BVal : bool -> Tm
|
||||||
|
If : Tm -> Tm -> Tm -> Tm
|
|
@ -41,7 +41,10 @@ Inductive Tm (n_Tm : nat) : Type :=
|
||||||
| Proj : PTag -> Tm n_Tm -> Tm n_Tm
|
| Proj : PTag -> Tm n_Tm -> Tm n_Tm
|
||||||
| TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
|
| TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
|
||||||
| Bot : Tm n_Tm
|
| Bot : Tm n_Tm
|
||||||
| Univ : nat -> Tm n_Tm.
|
| Univ : nat -> Tm n_Tm
|
||||||
|
| Bool : Tm n_Tm
|
||||||
|
| BVal : bool -> Tm n_Tm
|
||||||
|
| If : Tm n_Tm -> Tm n_Tm -> Tm n_Tm -> Tm n_Tm.
|
||||||
|
|
||||||
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
|
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
|
||||||
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
|
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
|
||||||
|
@ -94,6 +97,27 @@ Proof.
|
||||||
exact (eq_trans eq_refl (ap (fun x => Univ m_Tm x) H0)).
|
exact (eq_trans eq_refl (ap (fun x => Univ m_Tm x) H0)).
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma congr_Bool {m_Tm : nat} : Bool m_Tm = Bool m_Tm.
|
||||||
|
Proof.
|
||||||
|
exact (eq_refl).
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma congr_BVal {m_Tm : nat} {s0 : bool} {t0 : bool} (H0 : s0 = t0) :
|
||||||
|
BVal m_Tm s0 = BVal m_Tm t0.
|
||||||
|
Proof.
|
||||||
|
exact (eq_trans eq_refl (ap (fun x => BVal m_Tm x) H0)).
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma congr_If {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {s2 : Tm m_Tm}
|
||||||
|
{t0 : Tm m_Tm} {t1 : Tm m_Tm} {t2 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1)
|
||||||
|
(H2 : s2 = t2) : If m_Tm s0 s1 s2 = If m_Tm t0 t1 t2.
|
||||||
|
Proof.
|
||||||
|
exact (eq_trans
|
||||||
|
(eq_trans (eq_trans eq_refl (ap (fun x => If m_Tm x s1 s2) H0))
|
||||||
|
(ap (fun x => If m_Tm t0 x s2) H1))
|
||||||
|
(ap (fun x => If m_Tm t0 t1 x) H2)).
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
|
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
|
||||||
fin (S m) -> fin (S n).
|
fin (S m) -> fin (S n).
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -118,6 +142,10 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||||
TBind n_Tm s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2)
|
TBind n_Tm s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2)
|
||||||
| Bot _ => Bot n_Tm
|
| Bot _ => Bot n_Tm
|
||||||
| Univ _ s0 => Univ n_Tm s0
|
| Univ _ s0 => Univ n_Tm s0
|
||||||
|
| Bool _ => Bool n_Tm
|
||||||
|
| BVal _ s0 => BVal n_Tm s0
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
If n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) (ren_Tm xi_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
|
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
|
||||||
|
@ -145,6 +173,11 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||||
TBind n_Tm s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2)
|
TBind n_Tm s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2)
|
||||||
| Bot _ => Bot n_Tm
|
| Bot _ => Bot n_Tm
|
||||||
| Univ _ s0 => Univ n_Tm s0
|
| Univ _ s0 => Univ n_Tm s0
|
||||||
|
| Bool _ => Bool n_Tm
|
||||||
|
| BVal _ s0 => BVal n_Tm s0
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
If n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
|
||||||
|
(subst_Tm sigma_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
|
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
|
||||||
|
@ -185,6 +218,11 @@ subst_Tm sigma_Tm s = s :=
|
||||||
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2)
|
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
|
||||||
|
(idSubst_Tm sigma_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
|
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
|
||||||
|
@ -229,6 +267,11 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||||
(upExtRen_Tm_Tm _ _ Eq_Tm) s2)
|
(upExtRen_Tm_Tm _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
|
||||||
|
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
|
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
|
||||||
|
@ -274,6 +317,11 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||||
s2)
|
s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
|
||||||
|
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
|
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
|
||||||
|
@ -319,6 +367,12 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||||
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2)
|
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
|
||||||
|
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
|
||||||
|
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
|
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
|
||||||
|
@ -375,6 +429,12 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||||
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||||
|
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||||
|
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||||
|
@ -452,6 +512,12 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
||||||
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2)
|
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
|
||||||
|
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
|
||||||
|
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||||
|
@ -530,6 +596,12 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
||||||
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||||
|
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||||
|
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||||
|
@ -646,6 +718,12 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
|
||||||
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s2)
|
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s2)
|
||||||
| Bot _ => congr_Bot
|
| Bot _ => congr_Bot
|
||||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||||
|
| Bool _ => congr_Bool
|
||||||
|
| BVal _ s0 => congr_BVal (eq_refl s0)
|
||||||
|
| If _ s0 s1 s2 =>
|
||||||
|
congr_If (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
|
||||||
|
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
|
||||||
|
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s2)
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||||
|
@ -844,6 +922,12 @@ Core.
|
||||||
|
|
||||||
Arguments VarTm {n_Tm}.
|
Arguments VarTm {n_Tm}.
|
||||||
|
|
||||||
|
Arguments If {n_Tm}.
|
||||||
|
|
||||||
|
Arguments BVal {n_Tm}.
|
||||||
|
|
||||||
|
Arguments Bool {n_Tm}.
|
||||||
|
|
||||||
Arguments Univ {n_Tm}.
|
Arguments Univ {n_Tm}.
|
||||||
|
|
||||||
Arguments Bot {n_Tm}.
|
Arguments Bot {n_Tm}.
|
||||||
|
|
1467
theories/fp_red.v
1467
theories/fp_red.v
File diff suppressed because it is too large
Load diff
Loading…
Add table
Reference in a new issue