Add Abs EPar If

This commit is contained in:
Yiyun Liu 2025-01-12 22:02:19 -05:00
parent 764606cf2d
commit f68efaf938

View file

@ -1070,6 +1070,144 @@ Module CRedRRed.
Qed. Qed.
End CRedRRed. End CRedRRed.
Module CRRed.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Beta ***********************)
| AppAbs a b :
R (App (Abs a) b) (subst_Tm (scons b VarTm) a)
| AppPair a b c:
R (App (Pair a b) c) (Pair (App a c) (App b c))
| ProjAbs p a :
R (Proj p (Abs a)) (Abs (Proj p a))
| ProjPair p a b :
R (Proj p (Pair a b)) (if p is PL then a else b)
| IfAbs (a : Tm (S n)) b c :
R (If (Abs a) b c) (Abs (If a (ren_Tm shift b) (ren_Tm shift c)))
| IfPair a b c d :
R (If (Pair a b) c d) (Pair (If a c d) (If b c d))
| IfBool a b c :
R (If (BVal a) b c) (if a then b else c)
| IfApp a b c d :
R (If (App a b) c d) (App (If a c d) b)
| IfProj p a b c :
R (If (Proj p a) b c) (Proj p (If a b c))
(*************** Congruence ********************)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong0 a0 a1 b :
R a0 a1 ->
R (App a0 b) (App a1 b)
| AppCong1 a b0 b1 :
R b0 b1 ->
R (App a b0) (App a b1)
| PairCong0 a0 a1 b :
R a0 a1 ->
R (Pair a0 b) (Pair a1 b)
| PairCong1 a b0 b1 :
R b0 b1 ->
R (Pair a b0) (Pair a b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| BindCong0 p A0 A1 B:
R A0 A1 ->
R (TBind p A0 B) (TBind p A1 B)
| BindCong1 p A B0 B1:
R B0 B1 ->
R (TBind p A B0) (TBind p A B1)
| IfCong0 a0 a1 b c :
R a0 a1 ->
R (If a0 b c) (If a1 b c)
| IfCong1 a b0 b1 c :
R b0 b1 ->
R (If a b0 c) (If a b1 c)
| IfCong2 a b c0 c1 :
R c0 c1 ->
R (If a b c0) (If a b c1).
Lemma AppAbs' n a (b t : Tm n) :
t = subst_Tm (scons b VarTm) a ->
R (App (Abs a) b) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma IfAbs' n (a : Tm (S n)) (b c : Tm n) u :
u = (Abs (If a (ren_Tm shift b) (ren_Tm shift c))) ->
R (If (Abs a) b c) u.
Proof. move => ->. apply IfAbs. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h => n;
lazymatch goal with
| [|- context[App (Abs _) _]] => move => * /=; apply AppAbs'; by asimpl
| [|- context[If (BVal _) _]] => hauto l:on use:IfBool
| [|- context[Proj _ (Pair _ _)]] => hauto l:on use:ProjPair
| [|- context[If (Abs _) _]] => move => * /=; apply IfAbs'; by asimpl
| _ => qauto ctrs:R
end.
Qed.
End CRRed.
Module CRReds.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:CRRed.R.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong n (a b : Tm (S n)) :
rtc CRRed.R a b ->
rtc CRRed.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc CRRed.R a0 a1 ->
rtc CRRed.R b0 b1 ->
rtc CRRed.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma BindCong n p (a0 a1 : Tm n) b0 b1 :
rtc CRRed.R a0 a1 ->
rtc CRRed.R b0 b1 ->
rtc CRRed.R (TBind p a0 b0) (TBind p a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc CRRed.R a0 a1 ->
rtc CRRed.R b0 b1 ->
rtc CRRed.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
Lemma ProjCong n p (a0 a1 : Tm n) :
rtc CRRed.R a0 a1 ->
rtc CRRed.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed.
Lemma IfCong n (a0 a1 b0 b1 c0 c1 : Tm n) :
rtc CRRed.R a0 a1 ->
rtc CRRed.R b0 b1 ->
rtc CRRed.R c0 c1 ->
rtc CRRed.R (If a0 b0 c0) (If a1 b1 c1).
Proof. solve_s. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
rtc CRRed.R a b -> rtc CRRed.R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
induction h; hauto lq:on ctrs:rtc use:CRRed.renaming.
Qed.
End CRReds.
(* (***************** Beta rules only ***********************) *) (* (***************** Beta rules only ***********************) *)
(* Module RPar'. *) (* Module RPar'. *)
(* Inductive R {n} : Tm n -> Tm n -> Prop := *) (* Inductive R {n} : Tm n -> Tm n -> Prop := *)
@ -1733,10 +1871,10 @@ End RPars.
Lemma Abs_EPar n a (b : Tm n) : Lemma Abs_EPar n a (b : Tm n) :
EPar.R (Abs a) b -> EPar.R (Abs a) b ->
(exists d, EPar.R a d /\ (exists d, EPar.R a d /\
rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\ rtc CRRed.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\
(exists d, (exists d,
EPar.R a d /\ forall p, EPar.R a d /\ forall p,
rtc RPar.R (Proj p b) (Abs (Proj p d))). rtc CRRed.R (Proj p b) (Abs (Proj p d))).
Proof. Proof.
move E : (Abs a) => u h. move E : (Abs a) => u h.
move : a E. move : a E.
@ -1747,65 +1885,83 @@ Proof.
split; exists d. split; exists d.
+ split => //. + split => //.
apply : rtc_l. apply : rtc_l.
apply RPar.AppAbs; eauto => //=. apply CRRed.AppAbs; eauto => //=.
apply RPar.refl.
by apply RPar.refl.
move :ih1; substify; by asimpl. move :ih1; substify; by asimpl.
+ split => // p. + split => // p.
apply : rtc_l. apply : rtc_l.
apply : RPar.ProjAbs. apply : CRRed.ProjAbs.
by apply RPar.refl. eauto using CRReds.ProjCong, CRReds.AbsCong.
eauto using RPars.ProjCong, RPars.AbsCong.
- move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl). - move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl).
move : iha => [_ [d [ih0 ih1]]]. move : iha => [_ [d [ih0 ih1]]].
split. split.
+ exists (Pair (Proj PL d) (Proj PR d)). + exists (Pair (Proj PL d) (Proj PR d)).
split; first by apply EPar.PairEta. split; first by apply EPar.PairEta.
apply : rtc_l. apply : rtc_l.
apply RPar.AppPair; eauto using RPar.refl. apply CRRed.AppPair.
suff h : forall p, rtc RPar.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by suff h : forall p, rtc CRRed.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by
sfirstorder use:RPars.PairCong. sfirstorder use:CRReds.PairCong.
move => p. move /(_ p) /RPars.weakening in ih1. move => p. move /(_ p) /CRReds.renaming in ih1.
apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)). apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)).
by eauto using RPars.AppCong, rtc_refl. by eauto using CRReds.AppCong, rtc_refl.
apply relations.rtc_once => /=. apply relations.rtc_once => /=.
apply : RPar.AppAbs'; eauto using RPar.refl. apply : CRRed.AppAbs'. by asimpl.
by asimpl.
+ exists d. repeat split => //. move => p. + exists d. repeat split => //. move => p.
apply : rtc_l; eauto. apply : rtc_l; eauto.
hauto q:on use:RPar.ProjPair', RPar.refl. case : p; sfirstorder use:CRRed.ProjPair.
- move => n a0 a1 ha _ ? [*]. subst. - move => n a0 a1 ha _ ? [*]. subst.
split. split.
+ exists a1. split => //. + exists a1. split => //.
apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. apply rtc_once. apply : CRRed.AppAbs'. by asimpl.
+ exists a1. split => // p. + exists a1. split => // p.
apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl. apply rtc_once. apply : CRRed.ProjAbs.
Qed. Qed.
Lemma Abs_EPar_If n (a : Tm (S n)) q : Lemma Abs_EPar_If n (a : Tm (S n)) q :
EPar.R (Abs a) q -> EPar.R (Abs a) q ->
exists d, EPar.R a d /\ exists d, EPar.R a d /\
forall b c, rtc RPar.R (If q b c) (Abs (If d (ren_Tm shift b) (ren_Tm shift c))). forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (Abs (If d (ren_Tm shift b) (ren_Tm shift c))) e.
Proof. Proof.
move E : (Abs a) => u h. move E : (Abs a) => u h.
move : a E. move : a E.
elim : n u q /h => //= n. elim : n u q /h => //= n.
- move => a0 a1 ha _ b ?. subst. - move => a0 a1 ha iha b ?. subst.
move /Abs_EPar : ha. (* move /Abs_EPar : ha. *)
move => [[d [h0 h1]] _]. spec_refl.
move : iha => [d [hd h]].
exists d. exists d.
split => // b0 c. split => //.
apply : rtc_l. move => b0 c0.
apply RPar.IfAbs; auto using RPar.refl. move /(_ b0 c0) : h.
apply RPars.AbsCong. move => [e [h0 h1]].
apply RPars.IfCong; auto using rtc_refl. exists (Abs (App (ren_Tm shift e) (VarTm var_zero))).
- move => a0 a1 ha _ a ?. subst. split.
move /Abs_EPar : ha => [_ [d [h0 h1]]]. apply : rtc_l. apply CRRed.IfAbs.
apply : rtc_l. apply CRRed.AbsCong.
apply CRRed.IfApp.
apply CRReds.AbsCong. apply CRReds.AppCong; eauto using rtc_refl.
change (If (ren_Tm shift a1) (ren_Tm shift b0) (ren_Tm shift c0)) with (ren_Tm shift (If a1 b0 c0)).
hauto lq:on use:CRReds.renaming.
apply : rtc_r; eauto.
apply OExp.AppEta.
- move => a0 a1 ha iha a ?. subst.
spec_refl.
move : iha => [d [h0 h1]].
exists d. split => //. exists d. split => //.
move => b c. move => b c. move/(_ b c ): h1 => [e [h1 h2]].
eexists; split; cycle 1.
apply : rtc_r; eauto.
apply OExp.PairEta.
apply : rtc_l. apply : rtc_l.
apply RPar.IfPair; auto using RPar.refl. apply CRRed.IfPair.
Admitted. apply : rtc_l.
apply CRRed.PairCong0.
apply CRRed.IfProj.
apply : rtc_l.
apply CRRed.PairCong1.
apply CRRed.IfProj.
by apply CRReds.PairCong; apply CRReds.ProjCong.
- sauto lq: on.
Qed.
Lemma Pair_EPar n (a b c : Tm n) : Lemma Pair_EPar n (a b c : Tm n) :