Add constants to the reduction semantics
This commit is contained in:
parent
0f1e85c853
commit
f3718707f2
3 changed files with 74 additions and 130 deletions
|
@ -40,7 +40,7 @@ Inductive Tm (n_Tm : nat) : Type :=
|
|||
| Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
|
||||
| Proj : PTag -> Tm n_Tm -> Tm n_Tm
|
||||
| TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
|
||||
| Bot : Tm n_Tm
|
||||
| Const : TTag -> Tm n_Tm
|
||||
| Univ : nat -> Tm n_Tm.
|
||||
|
||||
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
|
||||
|
@ -83,9 +83,10 @@ exact (eq_trans
|
|||
(ap (fun x => TBind m_Tm t0 t1 x) H2)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Bot {m_Tm : nat} : Bot m_Tm = Bot m_Tm.
|
||||
Lemma congr_Const {m_Tm : nat} {s0 : TTag} {t0 : TTag} (H0 : s0 = t0) :
|
||||
Const m_Tm s0 = Const m_Tm t0.
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
exact (eq_trans eq_refl (ap (fun x => Const m_Tm x) H0)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Univ {m_Tm : nat} {s0 : nat} {t0 : nat} (H0 : s0 = t0) :
|
||||
|
@ -116,7 +117,7 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
|||
| Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1)
|
||||
| TBind _ s0 s1 s2 =>
|
||||
TBind n_Tm s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2)
|
||||
| Bot _ => Bot n_Tm
|
||||
| Const _ s0 => Const n_Tm s0
|
||||
| Univ _ s0 => Univ n_Tm s0
|
||||
end.
|
||||
|
||||
|
@ -143,7 +144,7 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
|||
| Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1)
|
||||
| TBind _ s0 s1 s2 =>
|
||||
TBind n_Tm s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2)
|
||||
| Bot _ => Bot n_Tm
|
||||
| Const _ s0 => Const n_Tm s0
|
||||
| Univ _ s0 => Univ n_Tm s0
|
||||
end.
|
||||
|
||||
|
@ -183,7 +184,7 @@ subst_Tm sigma_Tm s = s :=
|
|||
| TBind _ s0 s1 s2 =>
|
||||
congr_TBind (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
|
||||
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -227,7 +228,7 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
|||
congr_TBind (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
|
||||
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(upExtRen_Tm_Tm _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -272,7 +273,7 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
|||
congr_TBind (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
|
||||
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
|
||||
s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -317,7 +318,7 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
|||
congr_TBind (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
|
||||
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -373,7 +374,7 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
|||
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -450,7 +451,7 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
|||
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
|
||||
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -528,7 +529,7 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
|||
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -644,7 +645,7 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
|
|||
congr_TBind (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
|
||||
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
|
||||
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s2)
|
||||
| Bot _ => congr_Bot
|
||||
| Const _ s0 => congr_Const (eq_refl s0)
|
||||
| Univ _ s0 => congr_Univ (eq_refl s0)
|
||||
end.
|
||||
|
||||
|
@ -846,7 +847,7 @@ Arguments VarTm {n_Tm}.
|
|||
|
||||
Arguments Univ {n_Tm}.
|
||||
|
||||
Arguments Bot {n_Tm}.
|
||||
Arguments Const {n_Tm}.
|
||||
|
||||
Arguments TBind {n_Tm}.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue