Show that rpar preserves prov
This commit is contained in:
parent
ee7be7584c
commit
f0da5c97bb
1 changed files with 98 additions and 10 deletions
|
@ -1058,6 +1058,104 @@ Definition prov_univ {n} i0 (a : Tm n) :=
|
|||
| _ => False
|
||||
end.
|
||||
|
||||
|
||||
Inductive prov {n} : Tm n -> Tm n -> Prop :=
|
||||
| P_Bind p A A0 B B0 :
|
||||
rtc Par.R A A0 ->
|
||||
rtc Par.R B B0 ->
|
||||
prov (TBind p A B) (TBind p A0 B0)
|
||||
| P_Abs h a :
|
||||
(forall b, prov h (subst_Tm (scons b VarTm) a)) ->
|
||||
prov h (Abs a)
|
||||
| P_App h a b :
|
||||
prov h a ->
|
||||
prov h (App a b)
|
||||
| P_Pair h a b :
|
||||
prov h a ->
|
||||
prov h b ->
|
||||
prov h (Pair a b)
|
||||
| P_Proj h p a :
|
||||
prov h a ->
|
||||
prov h (Proj p a)
|
||||
| P_Bot :
|
||||
prov Bot Bot
|
||||
| P_Var i :
|
||||
prov (VarTm i) (VarTm i)
|
||||
| P_Univ i :
|
||||
prov (Univ i) (Univ i).
|
||||
|
||||
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
||||
Proof.
|
||||
move => h. elim : n a b /h; qauto ctrs:Par.R.
|
||||
Qed.
|
||||
|
||||
Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b.
|
||||
Proof.
|
||||
move => h. elim : n a b /h; hauto lq:on ctrs:Par.R.
|
||||
Qed.
|
||||
|
||||
Lemma prov_rpar n (u : Tm n) a b : prov u a -> RPar.R a b -> prov u b.
|
||||
Proof.
|
||||
move => h.
|
||||
move : b.
|
||||
elim : u a / h.
|
||||
- qauto l:on ctrs:prov inv:RPar.R use:@rtc_r, RPar_Par.
|
||||
- hauto lq:on ctrs:prov inv:RPar.R use:RPar.substing.
|
||||
- move => h a b ha iha b0.
|
||||
elim /RPar.inv => //= _.
|
||||
+ move => a0 a1 b1 b2 h0 h1 [*]. subst.
|
||||
have {}iha : prov h (Abs a1) by hauto lq:on ctrs:RPar.R.
|
||||
hauto lq:on inv:prov use:RPar.substing.
|
||||
+ move => a0 a1 b1 b2 c0 c1.
|
||||
move => h0 h1 h2 [*]. subst.
|
||||
have {}iha : prov h (Pair a1 b2) by hauto lq:on ctrs:RPar.R.
|
||||
hauto lq:on inv:prov ctrs:prov.
|
||||
+ hauto lq:on ctrs:prov.
|
||||
- hauto lq:on ctrs:prov inv:RPar.R.
|
||||
- move => h p a ha iha b.
|
||||
elim /RPar.inv => //= _.
|
||||
+ move => p0 a0 a1 h0 [*]. subst.
|
||||
have {iha} : prov h (Abs a1) by hauto lq:on ctrs:RPar.R.
|
||||
hauto lq:on ctrs:prov inv:prov use:RPar.substing.
|
||||
+ move => p0 a0 a1 b0 b1 h0 h1 [*]. subst.
|
||||
have {iha} : prov h (Pair a1 b1) by hauto lq:on ctrs:RPar.R.
|
||||
qauto l:on inv:prov.
|
||||
+ hauto lq:on ctrs:prov.
|
||||
- hauto lq:on ctrs:prov inv:RPar.R.
|
||||
- hauto l:on ctrs:RPar.R inv:RPar.R.
|
||||
- hauto l:on ctrs:RPar.R inv:RPar.R.
|
||||
Qed.
|
||||
|
||||
Lemma prov_epar n (u : Tm n) a b : prov u a -> EPar.R a b -> prov u b.
|
||||
Proof.
|
||||
move => + h. move : u.
|
||||
elim : n a b /h => n.
|
||||
- move => a0 a1 ha iha u ha0.
|
||||
constructor.
|
||||
move => b. asimpl.
|
||||
hauto lq:on ctrs:prov.
|
||||
- move => a0 a1 ha iha u hu.
|
||||
constructor.
|
||||
|
||||
|
||||
Lemma prov_par_pi n p h (A : Tm n) B C : prov h (TBind p A B) -> Par.R (TBind p A B) C -> prov h C.
|
||||
Proof.
|
||||
move E : (TBind p A B) => T + h0.
|
||||
move : p h A B E.
|
||||
elim : n T C /h0 => //=.
|
||||
- move => n a0 a1 ha iha p h A B ?. subst.
|
||||
specialize iha with (1 := eq_refl).
|
||||
move => {}/iha.
|
||||
move => h0.
|
||||
constructor.
|
||||
move => ?. asimpl. by constructor.
|
||||
-
|
||||
|
||||
Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b.
|
||||
Proof.
|
||||
move => + + h. move : u.
|
||||
elim : n a b /h => //=.
|
||||
|
||||
(* Can consider combine prov and provU *)
|
||||
Fixpoint prov {n} (h : Tm n) (a : Tm n) : Prop :=
|
||||
match a with
|
||||
|
@ -1215,16 +1313,6 @@ Proof.
|
|||
- hauto l:on inv:Tm rew:db:prov.
|
||||
Qed.
|
||||
|
||||
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
||||
Proof.
|
||||
move => h. elim : n a b /h; qauto ctrs:Par.R.
|
||||
Qed.
|
||||
|
||||
Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b.
|
||||
Proof.
|
||||
move => h. elim : n a b /h; hauto lq:on ctrs:Par.R.
|
||||
Qed.
|
||||
|
||||
Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b :=
|
||||
R0 a b \/ R1 a b.
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue