Write down the statement of pair_epar
This commit is contained in:
parent
ccbb9a1395
commit
ecee278d04
1 changed files with 10 additions and 0 deletions
|
@ -364,6 +364,16 @@ Proof.
|
|||
apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl.
|
||||
Qed.
|
||||
|
||||
Lemma Pair_EPar n (a b c : Tm n) :
|
||||
EPar.R (Pair a b) c ->
|
||||
(forall p, exists d, rtc RPar.R (Proj p c) d /\ EPar.R (if p is PL then a else b) d) /\
|
||||
(exists d0 d1, rtc RPar.R (App (ren_Tm shift c) (VarTm var_zero))
|
||||
(Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\
|
||||
EPar.R a d0 /\ EPar.R b d1).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma commutativity n (a b0 b1 : Tm n) :
|
||||
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
|
||||
Proof.
|
||||
|
|
Loading…
Add table
Reference in a new issue