From e8ec23a3e79bff75cde53a57a02c6aa90d4cab9a Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sat, 21 Dec 2024 22:36:14 -0500 Subject: [PATCH] Add the substitution lemmas for RPars --- theories/fp_red.v | 58 +++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 53 insertions(+), 5 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 9f88129..7c90cab 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -74,13 +74,13 @@ Module RPar. R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) | Proj1Abs a0 a1 : R a0 a1 -> - R (Proj1 (Abs a0)) (Abs (Proj1 a0)) + R (Proj1 (Abs a0)) (Abs (Proj1 a1)) | Proj1Pair a0 a1 b : R a0 a1 -> R (Proj1 (Pair a0 b)) a1 | Proj2Abs a0 a1 : R a0 a1 -> - R (Proj2 (Abs a0)) (Abs (Proj2 a0)) + R (Proj2 (Abs a0)) (Abs (Proj2 a1)) | Proj2Pair a0 a1 b : R a0 a1 -> R (Proj2 (Pair b a0)) a1 @@ -128,13 +128,48 @@ Module RPar. all : qauto ctrs:R. Qed. + Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)). + Proof. eauto using renaming. Qed. + + Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b : + R a b -> + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). + Proof. hauto q:on inv:option. Qed. + + Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)). + Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed. + Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). Proof. - move => h. move : m ρ0 ρ1. + move => + h. move : m ρ0 ρ1. elim : n a b /h. - Admitted. + - move => *. + apply : AppAbs'; eauto using morphing_up. + by asimpl. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - qauto. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R. + Qed. + Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : + R a b -> + R (subst_Tm ρ a) (subst_Tm ρ b). + Proof. hauto l:on use:morphing, refl. Qed. End RPar. Module EPar. @@ -285,6 +320,16 @@ Module RPars. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. + Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) : + rtc RPar.R a b -> + rtc RPar.R (subst_Tm ρ a) (subst_Tm ρ b). + Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed. + + Lemma substing n (a b : Tm (S n)) c : + rtc RPar.R a b -> + rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). + Proof. hauto lq:on use:morphing inv:option. Qed. + End RPars. Lemma Abs_EPar n a (b : Tm n) : @@ -385,7 +430,10 @@ Proof. exists (subst_Tm (scons b VarTm) d). split. (* By substitution *) - * admit. + * move /RPars.substing : ih2. + move /(_ b). + asimpl. + eauto using relations.rtc_transitive, RPars.AppCong. (* By EPar morphing *) * by apply EPar.substing. + move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst.