Start EPar_diamond
This commit is contained in:
parent
6daef9c807
commit
df9c91dad5
1 changed files with 15 additions and 0 deletions
|
@ -501,6 +501,21 @@ Lemma commutativity n (a b0 b1 : Tm n) :
|
|||
hauto q:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma EPar_diamond n (c a1 b1 : Tm n) :
|
||||
EPar.R c a1 ->
|
||||
EPar.R c b1 ->
|
||||
exists d2, EPar.R a1 d2 /\ EPar.R b1 d2.
|
||||
Proof.
|
||||
move => h. move : b1. elim : n c a1 / h.
|
||||
- move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]].
|
||||
exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))).
|
||||
hauto lq:on ctrs:EPar.R use:EPar.renaming.
|
||||
- hauto lq:on rew:off ctrs:EPar.R.
|
||||
- hauto lq:on use:EPar.refl.
|
||||
- move => n a0 a1 ha iha a2 ha2.
|
||||
|
||||
|
||||
|
||||
|
||||
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
||||
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
||||
|
|
Loading…
Add table
Reference in a new issue