Start EPar_diamond

This commit is contained in:
Yiyun Liu 2024-12-22 16:06:36 -05:00
parent 6daef9c807
commit df9c91dad5

View file

@ -501,6 +501,21 @@ Lemma commutativity n (a b0 b1 : Tm n) :
hauto q:on ctrs:rtc. hauto q:on ctrs:rtc.
Qed. Qed.
Lemma EPar_diamond n (c a1 b1 : Tm n) :
EPar.R c a1 ->
EPar.R c b1 ->
exists d2, EPar.R a1 d2 /\ EPar.R b1 d2.
Proof.
move => h. move : b1. elim : n c a1 / h.
- move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]].
exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))).
hauto lq:on ctrs:EPar.R use:EPar.renaming.
- hauto lq:on rew:off ctrs:EPar.R.
- hauto lq:on use:EPar.refl.
- move => n a0 a1 ha iha a2 ha2.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed. Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.