Need to tweak the definition of Prov

This commit is contained in:
Yiyun Liu 2024-12-24 15:31:50 -05:00
parent c6edc1b0be
commit cbe9941046
3 changed files with 95 additions and 10 deletions

View file

@ -7,4 +7,5 @@ Abs : (bind Tm in Tm) -> Tm
App : Tm -> Tm -> Tm App : Tm -> Tm -> Tm
Pair : Tm -> Tm -> Tm Pair : Tm -> Tm -> Tm
Proj : PTag -> Tm -> Tm Proj : PTag -> Tm -> Tm
Pi : Tm -> (bind Tm in Tm) -> Tm Pi : Tm -> (bind Tm in Tm) -> Tm
Bot : Tm

View file

@ -25,7 +25,8 @@ Inductive Tm (n_Tm : nat) : Type :=
| App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm | App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm | Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Proj : PTag -> Tm n_Tm -> Tm n_Tm | Proj : PTag -> Tm n_Tm -> Tm n_Tm
| Pi : Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm. | Pi : Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
| Bot : Tm n_Tm.
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)} Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0. (H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
@ -65,6 +66,11 @@ exact (eq_trans (eq_trans eq_refl (ap (fun x => Pi m_Tm x s1) H0))
(ap (fun x => Pi m_Tm t0 x) H1)). (ap (fun x => Pi m_Tm t0 x) H1)).
Qed. Qed.
Lemma congr_Bot {m_Tm : nat} : Bot m_Tm = Bot m_Tm.
Proof.
exact (eq_refl).
Qed.
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) : Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (S m) -> fin (S n). fin (S m) -> fin (S n).
Proof. Proof.
@ -86,6 +92,7 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
| Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) | Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
| Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1) | Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1)
| Pi _ s0 s1 => Pi n_Tm (ren_Tm xi_Tm s0) (ren_Tm (upRen_Tm_Tm xi_Tm) s1) | Pi _ s0 s1 => Pi n_Tm (ren_Tm xi_Tm s0) (ren_Tm (upRen_Tm_Tm xi_Tm) s1)
| Bot _ => Bot n_Tm
end. end.
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) : Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
@ -111,6 +118,7 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
| Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1) | Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1)
| Pi _ s0 s1 => | Pi _ s0 s1 =>
Pi n_Tm (subst_Tm sigma_Tm s0) (subst_Tm (up_Tm_Tm sigma_Tm) s1) Pi n_Tm (subst_Tm sigma_Tm s0) (subst_Tm (up_Tm_Tm sigma_Tm) s1)
| Bot _ => Bot n_Tm
end. end.
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm) Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
@ -149,6 +157,7 @@ subst_Tm sigma_Tm s = s :=
| Pi _ s0 s1 => | Pi _ s0 s1 =>
congr_Pi (idSubst_Tm sigma_Tm Eq_Tm s0) congr_Pi (idSubst_Tm sigma_Tm Eq_Tm s0)
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s1) (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
@ -191,6 +200,7 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
congr_Pi (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) congr_Pi (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upExtRen_Tm_Tm _ _ Eq_Tm) s1) (upExtRen_Tm_Tm _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
@ -234,6 +244,7 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
congr_Pi (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) congr_Pi (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm) (ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
s1) s1)
| Bot _ => congr_Bot
end. end.
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
@ -277,6 +288,7 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
congr_Pi (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) congr_Pi (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm) (compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s1) (upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat} Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
@ -330,6 +342,7 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
congr_Pi (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) congr_Pi (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm) (compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s1) (up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -404,6 +417,7 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
congr_Pi (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) congr_Pi (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm) (compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s1) (up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -479,6 +493,7 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
congr_Pi (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) congr_Pi (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s1) (up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
@ -593,6 +608,7 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
congr_Pi (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) congr_Pi (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm) (rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s1) (rinstInst_up_Tm_Tm _ _ Eq_Tm) s1)
| Bot _ => congr_Bot
end. end.
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
@ -791,6 +807,8 @@ Core.
Arguments VarTm {n_Tm}. Arguments VarTm {n_Tm}.
Arguments Bot {n_Tm}.
Arguments Pi {n_Tm}. Arguments Pi {n_Tm}.
Arguments Proj {n_Tm}. Arguments Proj {n_Tm}.

View file

@ -3,6 +3,7 @@ Require Import FunInd.
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
From Equations Require Import Equations.
(* Trying my best to not write C style module_funcname *) (* Trying my best to not write C style module_funcname *)
@ -53,7 +54,9 @@ Module Par.
| PiCong A0 A1 B0 B1: | PiCong A0 A1 B0 B1:
R A0 A1 -> R A0 A1 ->
R B0 B1 -> R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1). R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
End Par. End Par.
(***************** Beta rules only ***********************) (***************** Beta rules only ***********************)
@ -97,7 +100,9 @@ Module RPar.
| PiCong A0 A1 B0 B1: | PiCong A0 A1 B0 B1:
R A0 A1 -> R A0 A1 ->
R B0 B1 -> R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1). R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
@ -163,6 +168,7 @@ Module RPar.
- hauto lq:on ctrs:R. - hauto lq:on ctrs:R.
- hauto lq:on ctrs:R. - hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
Qed. Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
@ -209,7 +215,9 @@ Module EPar.
| PiCong A0 A1 B0 B1: | PiCong A0 A1 B0 B1:
R A0 A1 -> R A0 A1 ->
R B0 B1 -> R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1). R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
Lemma refl n (a : Tm n) : EPar.R a a. Lemma refl n (a : Tm n) : EPar.R a a.
Proof. Proof.
@ -252,6 +260,7 @@ Module EPar.
- hauto q:on ctrs:R. - hauto q:on ctrs:R.
- hauto q:on ctrs:R. - hauto q:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option. - hauto l:on ctrs:R use:renaming inv:option.
- hauto lq:on ctrs:R.
Qed. Qed.
Lemma substing n a0 a1 (b0 b1 : Tm n) : Lemma substing n a0 a1 (b0 b1 : Tm n) :
@ -551,6 +560,7 @@ Proof.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong. - hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong.
- hauto l:on ctrs:EPar.R inv:RPar.R.
Qed. Qed.
Lemma commutativity1 n (a b0 b1 : Tm n) : Lemma commutativity1 n (a b0 b1 : Tm n) :
@ -650,6 +660,20 @@ Proof.
- hauto l:on ctrs:OExp.R. - hauto l:on ctrs:OExp.R.
Qed. Qed.
Lemma Bot_EPar' n (u : Tm n) :
EPar.R Bot u ->
rtc OExp.R Bot u.
move E : Bot => t h.
move : E. elim : n t u /h => //=.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma EPar_diamond n (c a1 b1 : Tm n) : Lemma EPar_diamond n (c a1 b1 : Tm n) :
EPar.R c a1 -> EPar.R c a1 ->
EPar.R c b1 -> EPar.R c b1 ->
@ -697,6 +721,7 @@ Proof.
move : OExp.commutativity0 h2; repeat move/[apply]. move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h]. move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- qauto use:Bot_EPar', EPar.refl.
Qed. Qed.
Function tstar {n} (a : Tm n) := Function tstar {n} (a : Tm n) :=
@ -712,6 +737,7 @@ Function tstar {n} (a : Tm n) :=
| Proj p (Abs a) => (Abs (Proj p (tstar a))) | Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a) | Proj p a => Proj p (tstar a)
| Pi a b => Pi (tstar a) (tstar b) | Pi a b => Pi (tstar a) (tstar b)
| Bot => Bot
end. end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a). Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
@ -728,6 +754,7 @@ Proof.
- hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
Qed. Qed.
Lemma RPar_diamond n (c a1 b1 : Tm n) : Lemma RPar_diamond n (c a1 b1 : Tm n) :
@ -752,14 +779,53 @@ Proof.
sfirstorder use:relations.diamond_confluent, EPar_diamond. sfirstorder use:relations.diamond_confluent, EPar_diamond.
Qed. Qed.
Fixpoint prov {n} A B (a : Tm n) : Prop := Fixpoint depth_tm {n} (a : Tm n) :=
match a with match a with
| Pi A0 B0 => rtc Par.R A A0 /\ rtc Par.R B B0 | VarTm _ => 1
| App a b => prov A B a | Pi A B => 1 + max (depth_tm A) (depth_tm B)
| Abs a => prov A B (subst_Tm (scons A VarTm) a) | Abs a => 1 + depth_tm a
| _ => True | App a b => 1 + max (depth_tm a) (depth_tm b)
| Proj p a => 1 + depth_tm a
| Pair a b => 1 + max (depth_tm a) (depth_tm b)
| Bot => 1
end. end.
Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt :=
prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0;
prov A B (Abs a) := prov A B (subst_Tm (scons Bot VarTm) a);
prov A B (App a b) := prov A B a;
prov A B (Pair a b) := prov A B a /\ prov A B b;
prov A B (Proj p a) := prov A B a;
prov A B Bot := False;
prov A B (VarTm _) := False.
Next Obligation.
Admitted.
Next Obligation.
sfirstorder.
Qed.
Next Obligation.
sfirstorder.
Qed.
Next Obligation.
sfirstorder.
Qed.
Lemma prov_par n (A : Tm n) B a b : prov A B a -> EPar.R a b -> prov A B b.
Proof.
move => + h. move : A B.
elim : n a b /h.
- move => n a0 a1 ha iha A B. simp prov. move /iha.
asimpl. simp prov.
- hauto l:on rew:db:prov.
- simp prov.
- move => n a0 a1 ha iha A B. simp prov.
Lemma Par_confluent n (c a1 b1 : Tm n) : Lemma Par_confluent n (c a1 b1 : Tm n) :
rtc Par.R c a1 -> rtc Par.R c a1 ->
rtc Par.R c b1 -> rtc Par.R c b1 ->