Proof the termination of extract

This commit is contained in:
Yiyun Liu 2024-12-25 01:22:28 -05:00
parent 9bba98d411
commit c0faae5d8a

View file

@ -845,7 +845,43 @@ Proof.
move : m ξ. elim : n / a; scongruence. move : m ξ. elim : n / a; scongruence.
Qed. Qed.
Lemma depth_subst n m (ρ : fin n -> Tm m) a :
(forall i, depth_tm (ρ i) = 1) ->
depth_tm a = depth_tm (subst_Tm ρ a).
Proof.
move : m ρ. elim : n / a.
- sfirstorder.
- move => n a iha m ρ hρ.
simpl.
f_equal. apply iha.
destruct i as [i|].
+ simpl.
by rewrite -depth_ren.
+ by simpl.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- move => n a iha b ihb m ρ hρ.
simpl. f_equal.
f_equal.
by apply iha.
apply ihb.
destruct i as [i|].
+ simpl.
by rewrite -depth_ren.
+ by simpl.
- sfirstorder.
Qed.
Lemma depth_subst_bool n (a : Tm (S n)) :
depth_tm a = depth_tm (subst_Tm (scons Bot VarTm) a).
Proof.
apply depth_subst.
destruct i as [i|] => //=.
Qed.
Local Ltac prov_tac := sfirstorder use:depth_ren. Local Ltac prov_tac := sfirstorder use:depth_ren.
Local Ltac extract_tac := sfirstorder use:depth_subst_bool.
#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt := #[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt :=
prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0; prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0;
@ -856,7 +892,7 @@ Local Ltac prov_tac := sfirstorder use:depth_ren.
prov A B Bot := False; prov A B Bot := False;
prov A B (VarTm _) := False. prov A B (VarTm _) := False.
Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := #[tactic="extract_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (Pi A B) := Pi A B; extract (Pi A B) := Pi A B;
extract (Abs a) := extract (subst_Tm (scons Bot VarTm) a); extract (Abs a) := extract (subst_Tm (scons Bot VarTm) a);
extract (App a b) := extract a; extract (App a b) := extract a;
@ -864,16 +900,6 @@ Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (Proj p a) := extract a; extract (Proj p a) := extract a;
extract Bot := Bot; extract Bot := Bot;
extract (VarTm _) := Bot. extract (VarTm _) := Bot.
Next Obligation.
Admitted.
Next Obligation.
sfirstorder.
Qed.
Next Obligation.
sfirstorder.
Qed.
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a. (forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.